SEM VIJ (CBSGS)

CMPN

D. S.P.

## **QP Code: 31256**

|      |   | (3 hours) Total Marks: 80                                                                                                                                                                 |    |
|------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| N.B. | 2 | . Question No. 1 is compulsory.  Attempt any three questions out of remaining.  Assume suitable data if necessary and justify the assumptions.  Figures to the right indicate full marks. | 66 |
| Q1   | A | For the given causal sequences $x(n) = \{8, 9, 2, 3\}$ and $h(n) = \{4, 3, 6\}$ find the                                                                                                  | 05 |
|      |   | cross correlation.                                                                                                                                                                        |    |
|      | В | State the condition for stability of LTI system and determine for the given                                                                                                               | 05 |
|      |   | discrete time system $h(n) = (0.3)^n u(n) + 5\delta(n)$ , is stable or not.                                                                                                               |    |
|      | C | Differentiate IIR and FIR systems.                                                                                                                                                        | 05 |
|      | D | For the causal signal $x(n) = \{2, 2, 4, 4\}$ compute four point DFT using DIT-                                                                                                           | 05 |
|      |   | FFT.                                                                                                                                                                                      |    |
| Q2   | A | Check whether following system $y(n) = 2x(n-1) + x(2n)$ is:                                                                                                                               | 10 |
|      |   | Linear or non Linear     Causal or non-causal                                                                                                                                             |    |
|      |   | 3. Time variant or Time invariant 4. Static or Dynamic                                                                                                                                    |    |
|      | В | Draw the radix 2 DIT flow graph and find the DFT of the sequence $x(n) = \{10,$                                                                                                           | 10 |
|      |   | 11, 8, 5} using FFT flow graph.                                                                                                                                                           |    |
| Q3   | A | For $x(n) = \{2 \ 3 \ 4 \ 5 \ 1 \ 3\}$ , plot the following Discrete Time signals:                                                                                                        | 10 |
|      |   | 1.) x(n-1) 2.) x(n)u(-n) 3.) x(n-1)u(-n-1)                                                                                                                                                |    |
|      |   | 4.) x(-n)u(n) 5.) x(2n)                                                                                                                                                                   | *  |
|      | В | Determine whether or not the following signals are periodic.                                                                                                                              | 10 |
|      |   | If periodic specify its fundamental period.                                                                                                                                               |    |
|      |   | 1. $x(n) = \sin(0.25\pi n + 0.4)$                                                                                                                                                         |    |
|      |   | 2. $x(n) = \cos(0.5n\pi) + \sin(0.25n\pi)$                                                                                                                                                |    |
| Q4   | A | For the FIR digital filter with impulse response given by                                                                                                                                 | 10 |
|      |   | $h(n) = 2\delta(n) + 3\delta(n-1) + 4\delta(n-3) + \delta(n-4)$ sketch the magnitude response of the                                                                                      |    |
|      |   | filter.                                                                                                                                                                                   |    |
|      | В | State any five DFT properties.                                                                                                                                                            | 10 |
|      | 4 | /                                                                                                                                                                                         |    |

[TURN OVER]

1

FW-Con. 9945-16.

**QP Code: 31256** 

10

Q5 A Find circular convolution of  $x_1(n) = \{5, 6, 2, 1\}$  and  $x_2(n) = \{3, 2, 1, 4\}$  by 10 computing DFT of  $x_1(n)$  and  $x_2(n)$ . B Compute Linear Convolution of causal sequence  $x(n) = \{7, 6, 4, 5, 2, 4, 5, 2, 3\}$ and h(n)={1 2 3 1} using fast overlap save method. Q6 A Write a detailed note on Carls' Correlation Coefficient Algorithm. 10 B Write a detailed note on DSP Processor and Architecture.

FW-Con. 9945-16.

SEM VII (CBSGS) / CMPN CRYPTOGRAPHY & 31296

(Time: 3hrs) SEWEITH Marks 80) MAY 16

1. Question No 1 is compulsory.

2. Attempt any three out of the remaining five questions.

| <ul> <li>Q1. (a) Explain software flaws with examples</li> <li>(b) List with examples the different mechanisms to achieve security</li> <li>(b) Explain with examples, keyed and keyless transposition ciphers</li> <li>(c) Elaborate the steps of key generation using RSA algorithm</li> </ul> | 05<br>05<br>05<br>05 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <ul> <li>Q2. (a) A and B decide to use Diffie Hellman algorithm to share a key. They chose p=23 and g=5 as the public parameters. Their secret keys are 6 and 15 respectively. Compute the secret key that they share.</li> <li>(b) Explain working of DES.</li> </ul>                           | e 10<br>10           |
| Q3. (a) What is access control? How does the Bell La Padula model achieve access                                                                                                                                                                                                                 | 10                   |
| control. Q3. (b) What is a digital signature. Explain any digital signature algorithm in detail                                                                                                                                                                                                  | . 10                 |
| Q4. (a) Compare packet sniffing and packet spoofing. Explain session hijacking<br>attack.                                                                                                                                                                                                        | 10                   |
| Q4. (b) Explain working of Kerberos.                                                                                                                                                                                                                                                             | 10                   |
| Q5. (a) What is a firewall? What are the firewall design principles?                                                                                                                                                                                                                             | 05                   |
| Q5. (b) What are the various ways for memory and address protection                                                                                                                                                                                                                              | 05                   |
| Q5. (c) Explain the significance of an Intrusion Detection System for securing a network. Compare signature based and anomaly based IDS.                                                                                                                                                         | 10                   |
| Q6. Write in brief about (any four):  i) Email Security.  ii) SSL handshake protocol  iii) IPSec protocols for security  iv) Denial of service attacks  v) IDEA                                                                                                                                  | 20                   |
|                                                                                                                                                                                                                                                                                                  |                      |

## BE Sem-VII CCBSGS CMPN Antificial Intelligence Mot-16.

QP Code: 31334

(3 Hours)

[ Total Marks: 80]

- N. B.: (1) Each question carry 20 marks.
  - (2) Question 1 is compulsory.
  - (3) Attempt any three (3) from the remaining questions.
  - (4) Assume suitable data wherever required.
- 1. Attempt any four (4) questions from the following:
  - (a) Draw and explain architecture of Expert System.
  - (b) Explain Hill-climbing algorithm with an example.
  - (c) Give PEAS description for a Robot Soccer player. Characterize its environment.
  - (d) Explain Turing test designed for satisfactory operational definition of intelligence.
  - (e) Prove that A\* is admissible if it uses a monotone heuristic.
  - (f) Compare and Contrast problem solving agent and planning agent.
- 2. (a) Explain decision tree learning with an example. What are decision rules? 10 How to use it for classifying new samples?
  - (b) Write first order logic statements for following statements:
    - (i) If a perfect square is divisible by a prime p then it is also divisible by square of p.
    - (ii) Every perfect square is divisible by some prime.
    - (iii) Alice does not like Chemistry and History.
    - (iv) If it is Saturday and warm, then Sam is in the park.
    - (v) Anything anyone eats and is not killed by is food.
- 3. (a) Design a planning agent for a Blocks World problem. Assume suitable 10 initial state and final state for the problem.
  - (b) Find the probabilistic inference by enumeration of entries in a full joint distribution table shown in figure 1.
    - (i) No cavity when toothache is there
    - (ii) p (Cavity! toothache or catch)

|        | toothache |        | ¬toothache |        |
|--------|-----------|--------|------------|--------|
|        | catch     | ¬catch | catch      | ¬catch |
| cavity | .108      | .012   | .072       | .008   |
| cavity | .016      | .064   | .144       | .576   |

Figure 1.

[ TURN OVER

FW-Con. 11269-16.

4. (a) Compare following informed searching algorithms based on performance measure with justification: Complete, Optimal, Time complexity and space complexity.

10

- a) Greedy best first
- b) A\*
- c) Recursive best-first (RBFS)
- (b) Apply alpha-Beta pruning on example given in Figure 2 considering first 10



Figure 2.

- 5. (a) Explain how genetic algorithm can be used to solve a problem by taking a suitable example.
  - (b) Consider the graph given in Figure 3 below. Assume that the initial state is A and the goal state is G Find a path from the initial state to the goal state using DFS. Also report the solution cost



- 6. (a) Explain the steps involved in converting the propositional logic 10 statement into CNF with a suitable example
  - (b) What are the basic building blocks of Learning Agent? Explain each of them with a neat block diagram.

MAY IL

## IMAGE PROCESSING

QP Code: 31386

(3 hours)

[80 Marks]

N.B.:

- 1. Question No.1 is compulsory.
- 2. Attempt any Three questions out of remaining Five questions.
- 3. Figures to the right indicate full marks.
- 4. Assume any suitable data wherever required but justify the same.

Q.1

Q.2

- a) What is Unitary transform matrix? Explain with example.
- 5
- b) Explain in short sampling and quantization method for digital image.
  - 5
- c) Explain in short morphological operations Dilation and Erosion.
- 5

5

- d) Justify /contradict: All Image compression techniques are invertible.
- a) Explain in detail any two types of Image File Formats 8
- b) For the 3 bit 4x4 size image perform following operations.
  - i) Thresholding T = 3
  - ii) Intensity level slicing with background,  $r_1 = 3$  and  $r_2 = 5$
  - iii) Bit plane slicing for MSB and LSB planes

| 3 | 3 | 1 | 2 |
|---|---|---|---|
| 1 | 4 | 0 | 7 |
| 3 | 4 | 2 | 6 |
| 2 | 4 | 6 | 4 |

Q.3 a) Perform histogram equalization and draw new equalized histogram of 10

the following image data

Gray Level 0 1 2 3 4 5 6

No. of pixels 400 700 1350 2400 3000 1500 650

| 20 |                                                                                                                      |    |
|----|----------------------------------------------------------------------------------------------------------------------|----|
| b) | Find Huffman code for the symbols given below. Which kind of redundancy is removed by Huffman code? Explain the term | 10 |
|    | Compression Ratio.                                                                                                   |    |

| Symbols        | Probability |
|----------------|-------------|
| a <sub>l</sub> | 0.1         |
| a <sub>2</sub> | 0.3         |
| a <sub>3</sub> | 0.2         |
| a <sub>4</sub> | 0.25        |
| a <sub>5</sub> | 0.07        |
| a <sub>6</sub> | 0.08        |

TTURNOVER.

Q.4 a) Using matrix multiplication method calculate 2-D DFT of

 $f(x,y) = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 1 & 1 & 2 & 2 \\ 2 & 0 & 1 & 3 \\ 1 & 2 & 2 & 4 \end{bmatrix}$ 

- b) Using the Butterfly diagram, compute Hadamard transform for  $x(n) = \{1, 2, 3, 4, 1, 2, 1, 2\}$
- Q.5 a) What are the different types of redundancies in digital image? Explain 10 in detail giving example of each.
  - b) What is image segmentation? Explain the following methods of image 10 segmentation.
    - i) Region growing
    - ii) Split and Merge
- Q.6 Write detail notes on (any two)
  - i) Hough Transform
  - ii) Homomorphic filter
  - iii) Hit or Miss Transform
  - iv) Chain code

20