sem-VII - Glectronics (CBSas) Embedded System Design

(3 Hours)

[Total Marks

1)	Question	10.	1 15	CO	mp	uison	200

- Solve any three from the remaining five questions.
- 3 Assume suitable additional data if necessary.

Q1. Answer the following questions.

(20)

- a) With the help of an example explain periodic task. List and explain the various types of tasks in an embedded system.
- b) With respect to power, performance and cost state and explain the associated design metrics for an embedded system.
- c) What are interrupts and explain the factors that contribute to interrupt response time in a system.
- d) Explain the structure of typical C source program for ARW based target processor. Typically list the various data types along with memory size supported by a C compiler.
- Q2 a) What is a task and various states that a task can lie in for an embedded environment. (10)
- b) Explain briefly the problem of priority inversion and mechanism to prevent the same.
- Q3) a) State and explain the criteria for tasks schedulability and explain various scheduling nechalisms (10)
- b) Explain briefly the regimes struggiffe of Cortex-M3 arctifecture along-with the function of various special registers.
- Q4) a)Distinguish between Coriex M3 and M4 architecture and explain briefly the interrupt research of M3 architecture.
- b) Explain the ophiet on and significance of following MicroC/OS-II functions (Any Thire)
- a) OSInit(); b) OSSemPend(); & OSSemPost(); c) OSTasicCreate();
- d) OSMboxPost(); & OSMboxPend();
- Q5) a) Write a brief note to bring out the comparision between Code: 1/3, A8 and 24 architectures. (10)

N.B

b) Explain the various inter- process/task communication tools like pipe, mailbox, message queue and semaphore used by an RTOS environment. (10)

Q6) Write short notes on (Any two)

- a) Serial communication standard RS-232 and comparison with RS 485
- b) Low power features in Cortex M 3 architecture.
- c) Black box and White box testing.

gane i dans sp

MD-Con. 7986 -15.

SEM-VII (CBSGS)/IC Technology

Time: 3 Hours.

Max. Marks: 80

N.	В.		
	1)	Question No. 1 is compulsory	
		Question No. 1 is compulsory Solve any three questions from remaining questions	
		Assume suitable data if necessary	1
	5)	ristino salatio dana li nocessaly	and I want
			CV
1.	Solv	ve any four of the following	(50)
	(a)	Explain predeposition and drive in steps in diffusion process.	3
	(b)	Classify and discuss in brief the types of Thin Film Deposition methods.	
	(c)	What is Hall effect? Enlist important electrical parameters for which measureme	ent is
		required before device processing begins.	
	(d)	Explain the need of isolation in VLSI and list the methods to accomplish it?	
		Explain SOI fabrication using bonded SOI and smart cut method.	
2.			
	(a)	Explain Czochralski method for Silicon crystal growth. What are its advantages?	(10)
	100	What do you mean by Class of a clean room? Give the steps in a standard RCA cycle dur	
		wafer cleaning	(10)
3.		13	
	(a)	Explain Solid source diffusion system with neat diagram. Also give one example of	each
		source for P-type and N-type diffusion.	(10)
	(b)	Explain High K and Low K dielectrics with application of each.	(05)
	(c)	What are the basic reactions in formation of SiO ₂ in dry oxidation and wet oxidation?	
		Explain where these methods are used during MOSFET fabrication process. ((05)
4.		O	
	(2)	Explain the fabrication process steps along with vertical cross-sectional views for CMOS	
	(a)	inverter using N-well process	(10)
	(b)	What are the different types of design rules? Draw layout of 2 input NAND gate as per	(/
	* 150	lambda (λ) based design rules (Show units in lambda).	(10)
5.			
	(a)	Enlist important electrical parameters for which measurement is required before device	
		processing begins. Also describe the experimental setup for the Four Probe method for	
	41.3	resistivity measurement with the help of a neat diagram	(10)
•		Explain the difference between SOI Finfet and bulk Finfet? State advantages of Finfet devices over single gate MOSFET devices. Also draw cross-	(03)
	(0)	sectional views of different multigate structures.	(07)
		Contract viers of anieren managers of accords.	1377
6.	Wr	rite short notes on any three of the following	(20)
	(a)	MESFET Fabrication	

(b) Carbon Nanotube Transistor

(c) SOI Technology
(d) Parametric tests and Functionality tests for IC testing

QP Code: 5939

(3 Hours) [Total Marks :80

- B.: (1) Question no. 1 is compulsory.
 - (2) Solve any three questions out of remaining five questions.
 - (3) Figures to the right indicate full marks.
 - (4) Solve one complete question together.
 - (5) Assume suitable data wherever necessary.

Attempt any four from the following:-

- (a) What are the advantages of SVM over the conventional Sine wave PWM? Explain. 5
- (b) List the merits and demerits of online and offline UPS.
- (c) Explain regenerative braking for DC motors.
- (d) Explain in brief the effect of sourceinductance in single phase fully controlled 5 bridge rectifier.
- (e) Explain the concept of UPS and give classification of UPS system.
- (a) Explain clearly the steps involved in Space Vector Modulation for three phase 10 voltage source inverter.
- (b) A single phase full-wave mid-point converter with freewheeling diode as shown 10 below in Fig. Q2(b) is supplied from a 120V, 50 Hz supply with a source inductance of 0.33 mHenry. Assuming that the load current is continuous at 4A, find the overlap angle for
 - (i) Transfer of current from a conducting thyristor to the commutating diode.
 - (ii) From the commutating diode to a thyristor when the firing angle is 15 degree.

- (a) Derive and explain the state-space model of Buck converter.
 - ck converter.
- (b) Explain the PI (Proportional + Integral) control of DC-DC converter with the 10 help of neat diagram.
- (a) Derive the expressions for output voltage and current for a single phase fully 8 controlled bridge rectifier with source inductance using equivalent circuit.
- (b) What are SMPS? Give classification and explain any SMPS circuit in detail. 6
- (c) Draw and explain the battery charging circuit involving power electronics system. 6

I TURN OVER

MD-Con. 9978-15.

QNo 1

2No 2

2.No 3

Q.No.4

Q.No.5

Q.No.6

QP Code: 5939

5. (a)	A separately excited DC motor is supplied from 230V, 50Hz source through a single-phase half wave controlled converter. Its field is fed through single-phase	10 4
2	semi-converter with zero degree firing angle delay.	The same of the sa
	Motor resistance = 0.70Ω , Motor constant = $0.5 \text{ volts sec/rad}$.	-7c.
	For a rated load torque of 15 NM at 1000 rpm and for continuous ripple-free	7,
	current, determine:	(4)
	(i) Firing angle delay of the armature converter.	
	(ii) RMS value of thyristor & freewheeling diode current.	
	(iii) Input power factor of the armature current.	
(h)	Explain various methods of speed control for 3-phase induction motor.	
(0)	explain various motions of speed control for 3-phase induction motor.	10
6 Write	e short notes on:	
(a)		
	Comparison of fly-back and forward converters used in SMPS.	7
(b)	Power electronics applications in induction heating.	6
(c)	Slip power recovery scheme for induction motor using	7
	Kramer Drive below sub-synchronous speed.	
	G.	

MD-Con. 9978-15.

Sem-VII-ETRX-(CBSas) - Computer Communication Networks - NOV-15 QP Code: 5985

(3 Hours)

[Total Marks: 80

		Instructions to candidates	Marks
		 Q.No. 1 is compulsory. Solve any 3 questions from the remaining 5 questions. Figures on right side indicate full marks. 	LANA
		Time - 3 hours Max. Marks -	80
QNo 1	a)	Explain the various Connecting devices used in computer networks. Explain bit stuffing and unstuffing with respect to HDLC.	05
	b) c) d)	Explain bit stuffing and unstuffing with respect to HDLC., Explain CSMA/CA method of random access. Compare TCP and UDP.	05 05 05
2No 2	a)	Explain the ISO-OSI model of networks with the help of neat	10
	b)	diagrams. Explain the sliding window ARQ used for error control.	10
2.No 3	a)	Explain the various station types, Configurations, response modes and Frame formats in HDLC.	10
	b)	Draw the TCP header format with the help of a neat diagram.	10
Q.No.4	a)	Explain circuit switching, packet switching and message switching.	10
	b)	Explain how routers use link state routing algorithm to create the routing table.	10
2.No.5	a)	List the various options used in the IP datagram and explain each in brief.	10
2 No. C	b)	Draw and discuss the Ethernet frame format.	10
2.No.6		Write short notes on Guided and unguided media. Open loop congestion control. PPP Header format Network topologies.	05 05 05 05

MD-Con. 10763-15

Efective.

=/ETRX/Sem-VII (CBSGS)/Digital Image Processing NOV-15

QP Code: 6142

(3 Hours)

[Total marks: 80

N.B.

(1) Question No. 1 is compulsory.

(2) Attempt any three questions from remaining.

(3) All questions carry equal marks.

(3) Assume suitable data wherever necessary.

		Sal - Following:	t					
Q.1	An	swer any four of the following:-	5)					
	a)	Eveloin the fundamental steps in an image riocessing dystem	5)					
	b)	State the properties of Discrete Cosine Transform.	5)					
	c)		(5)					
	d)	Differentiate between spatial and tonal resolutions. Justify "It is difficult to segment poorly illuminated images. "	(5)					
	e)	the same of the sa	(10)					
22	a)	Desform Histogram Equalization on Gray level distribution shown in the						
Q.2	۵,	the histograms of the original and equalized images.						
	1							
		Gray Levels 0 1 2						
		1 100 000 100 200 150 0 0	(10)					
	b)	The state of the s	(10)					
	2,	Discuss advantages of homomorphic internal block diagram.						
		Define segmentation. State different methods based on similarity. Explain any one	(10)					
Q.3	(a)	Define segmentation. State different methods based on similarity						
		method with example.	(10)					
9 9	b)	Using Hough's Transform, find line passing through the maximum number of points	(4.0)					
16	1	-tuen holowy-						
		(3,4), (0,-4), (1,4), (6,12), (4,1), (1.5,0), (-2,2), (-1,-3), (3,-2)	(10)					
Q.4	(a)		,					
	1	uniformly quantized with 6 bit accuracy, Construct its 3 bit 103 cours						
		error for the decoded IGS code.	(10)					
	b)	Draw and Explain block diagram of PEG Encoder and Decoder.	(12)					
Q.5	(a)	Apply FFT algorithms to the rows and columns of image segments shows						
		2D DFT. Show the Butterfly diagrams.	2.0					
	1	6 1 3 2						
		1 6 4 1						
		1 2 1 1	(08					
	b	What is Hadamard Transform? Calculate Hadamard Transform of following image.	,					
		2 1 2 1						
1		1 2 3 2						
		2 3 4 3						
		1 2 3 2	(20					
a	6 V	vrite short notes on any three of the following:-	- 12					
1	a		-					
	-	Region Filling	-					
1	-	Vector Quantization Opening and Closing operations on binary image	-					
1								

QP Code: 2300

	_	(3 Hours) [Total Marks :100
N.		
1.	(a) (b) (c) (d)	Explain regenerative braking in DC motor.
2.	(a) (b)	Explain Basic series inverter with circuit diagram and waveforms. 10 Explain the working of current cumulated chopper with the help of circuit diagram 10 and waveforms.
3.	(a)	Explain the working of forward converter used in SMPS with circuit diagram 10 and waveforms.
	(b)	Explain semiconverter drive to control the speed of DC motor in contineous 10 current mode. Draw torque speed characteristics.
4.	(a)	Explain control scheme to control the speed of AC motor with the help of 10 curves and implementation circuit.
	(b)	What is the effect of harmonics present in inverter output. Discuss the various 10 methods to reduce the harmonics present in inverter output.
5.	(a)	A 210, 1200 rpm, 10 A separately excited motor is controlled by 1 φ fully controlled 10 converter with an a.c. source voltage of 230V, 50HZ. Assume that sufficient inductance is present in the armature circuit to make the motor current continuous and ripple free for any torque greater than 25% of rated voltage R _a =1.5 Ω (i) What should be the firing angle to get the rated torque at 800 rpm (ii) Compute the firing angle for the rated braking torque-at-1200 rpm
	(b)	
6.	(a)	Explain class E chopper circuit with the help of waveforms and quadrants of 10 operation
	(b)	What do you understand dual converter. Draw diagram and waveforms. Derive 10 the relation for $\alpha_1 + \alpha_2 = 180^\circ$
7.	· · · · · · · · · · · · · · · · · · ·	te short notes on (any two):-,
	in	Effect of source inductance in fully controlled bridge rectifier 10 Reter resistance control of induction motor
11	(c)	Rotor resistance control of induction motor 10 Parallel Inverter. 10
6		

ETRX/Sem-VII (CBSGS)/Artificial Intelligence - Nov' 15

Q.P. Code: 6145

[Total Marks: 80 (3 Hours) N.B.: (1) Question No.1 is compulsory. (2) Attempt any three questions from remaining questions. (3) Assume suitable data whevevre necessary. Attempt any four questions: (a) Compare and contrast the biological neuron and artificial neurons. (b) Define fuzzy logic and crisp logic. With suitable examples, explain the operations and properties of fuzzy sets, crisp sets, fuzzy relations and crisp relations. (c) What are the various activation functions and learning rules used in neural networks? (d) Explain any two types of De-fuzzification methods. (e) Draw a McCulloch-Pitts neuron and explain its working (a) Differentiate between supervised and unsupervised learning methods. 2. (b) Design a Hopfield network for 4-bit bipolar patterns. The training patterns are : [1,-1,-1,-1][-1,1,1,-1][-1,-1,-1,1]Find weight matrix and energies for three input samples. Determine the pattern to which the sample S = [-1, 1, -1, -1] associates. (a) What are the two types of BAMP Explain. How are the weights determined in a 3. discrete BAM. (b) Find the weights required to perform the following classification using Perceptron network. The vectors (1,1,1,1) and (-1,1,-1,-1) are belonging to the class and have target value 1 and vectors (1,1,1-1) and (1,-1,-1, 1) are not belonging to the class and have a target value -1. Assume learning rate as 1 and initial weights as 0. (a) With a near architecture, explain the training algorithm of Kohonen self-organizing 10 4. (b) State the importance of back propagation algorithm and draw its architecture. 10

TURN OVER

MD-Con. 11731-15.

Q.P. Code: 6145

2

(a) For the fuzzy sets A, B and C are define on discrete universe X, Y and Z repectively. 5. repectively.

$$A = \left\{ \frac{0.1}{x_1} + \frac{0.5}{x_2} + \frac{1.0}{x_3} \right\}, B = \left\{ \frac{0.3}{y_1} + \frac{0.8}{y_2} \right\}, A = \left\{ \frac{0.4}{z_1} + \frac{0.7}{z_2} + \frac{1.0}{z_3} \right\}$$

- (i) Fuzzy Cartesian product P = A X B;
- (ii) Fuzzy Cartesian product S = B X C;
- (iii) T=P O S using min-max and max-product method.
- (b) With a neat architecture, explain the training algorithm and testing algorithm of Adaline network.

6.

- Write short notes on any four: (a) Simulated annealing,
- (b) LVQ,
- (c) Fuzzy Logic Controller,
- (d) Boltzmann Machine,
- (e) Adaptive Resonance Theory.

20