Inst. / SEM VIII (CBSGS) / Digital Control System/ Nov. 2017 Q. P. Code: 24123

(3 Hours)

Total Marks: 80

Note: (1) Q1 is compulsory.

- (2) Attempt any three from the remaining.
- (3) Assume suitable data wherever necessary.

Q1. Answer any four from the following:

(20)

- a. Map $\alpha_1 = -0.5$ and $\alpha_2 = 1$ lines from s-plane to Z-plane using impulse invariance method.
- b. A first order discrete time LTI system is represented by the state model

$$x(k+1) = -x(k) + 2u(k)$$

$$y(k) = 0.5x(k)$$

Obtain its pulse transfer function.

- Give the Kalman's test to find controllability and observability of a system.
- d. What do you mean by state transition matrix? List its properties.
- e. Explain 1-DOF (degree of freedom) and 2-DOF feedback controller.
- Q2. (a) Obtain state space representation of the following systems in both first companion and second companion form. (10)

$$G(z) = \frac{z^3 + z^2 + z + 2}{z^4 + 0.2z^3 + 0.5z^2 + z + 5}$$

(b) A system with transfer function

$$G(s) = \frac{4}{s(s+1)}$$
 is sampled at instants

with sampling time 0.1 sec. If the hold circuit used is of zero order, obtain the equivalent discrete data system. (10)

2

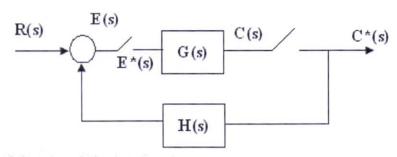
Q3. (a) Derive the solution of the following system

$$x (k + 1) = G x (k) + H u (k)$$

 $y(k) = Cx (k) + Du(k)$

using Z-transform method. Assuming input to a discrete system as zero but

$$x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $G = \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}$, $H = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 0 \end{bmatrix}$.


Determine x(k) for all k > 0.

(b) Given the closed loop transfer function T(z) = N(z)/D(z), where,

$$D(z) = z^3 - z^2 - 0.2z + 0.1$$

Use Routh's Hurwitz criteria to find the number of z-plane poles of T(z) inside, outside and on the unit circle, Is the system stable? (10)

Q4 (a) Explain the Mason's gain formula to obtain transfer function from a signal flow graph. Find the pulse transfer function of the following system using sampled signal flow graph approach. (10)

(b) Design a state feedback controller for the system

$$x(k + 1) = G x(k) + H u(k)$$
with $G = \begin{bmatrix} 1 & 0.08 \\ 0 & 0.7 \end{bmatrix} H = \begin{bmatrix} 0.004 \\ 0.08 \end{bmatrix}$

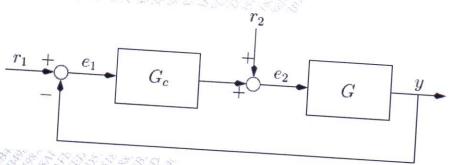
for deadbeat response

(10)

3

Q5. (a) Design a full order state observer so that observer poles are located at - 0.2 and - 0.4 for the system (10)

$$x(k+1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(k).$$


(b) A PID controller is described by the following relation between input e(t) and output u(t):

(10)

$$u(t) = k_p \left(e(t) + \frac{1}{T_I} \int_0^t e(t)dt + T_D \frac{de(t)}{dt} \right)$$

Using the trapezoidal rule for integration and backward-difference approximation for the derivative, obtain the difference equation model of the PID algorithm. Also obtain the transfer function U(z)/E(z)

Q6. (a) What do you mean by internal stability? How is it different from bounded input bounded output (BIBO) stability? For the system shown in the block diagram:

Determine the internal stability if $G = \frac{1}{z-1}$ and $G_c = \frac{1.5z-1}{z-1}$ (10)

4

(b) Define static position, velocity and acceleration error coefficient for a discrete time LTI system and find the steady state error for step, ramp and parabolic input for a unity feedback system characterized by the open loop transfer function

$$G_{ho}G(z) = \frac{0.5(z+1)}{(z-1)(z-0.5)(z-0.9)}$$

The sampling period is T=0.1 sec.

(10)

			(3 Hours)	otal Marl	ks: 80
N.	B.:	1.	Q. No 1 is compulsory.		
		2.	Attempt any THREE questions from Q No 2 to Q No 6.		
		3.	Figures to the right indicate full marks.		
		4.	Assume suitable data wherever necessary.		
1.	Solve any Four:				(20)
		a) What is cavitation? Write its ill effects.			(20)
			ain the reliability engineering terms: MTTR, MTTF and MTBF.		
	c)	Defin	ne control valve coefficient. Give the factors that affect this coefficient	ant C	
	d)	Expla	ain the need of thermocouple compensation, during design of Therm	occuple	
	e)	Define ergonomics. How ergonomics is applied in designing control panel?			
2.					(10)
		Fluid- Outle	- Dry saturated steam, Flow rate: 63000 lb/hr, inlet pressure = t pressure = 215psia, pipe diameter = 6" sch 40,	245psia,	
			e is eccentric disk type $Cd = 27$, $X_T = 0.25$		
	b)	Discu	ass the various factors to be added while sizing of a control verssible fluids flow.	alve for	(10)
3.	a)	Find t	the appropriate valve size for the following:		(10)
			- Water, Flow rate = 1600gpm, inlet pressure = 42.6psia,		(10)
		outlet	pressure = 34.7psia, Pipe diameter = 8" schedule 40 pipe,		
		Specif	fic gravity = 0.88, Type of valve is 60-degree butterfly valve with C	d = 17.	
	b)	Expla	in the steps to be followed for System Engineering.		(10)
4.	a)	Write	the guidelines for enclosure design.		(10)
			the following data, calculate the appropriate valve size:		(10) (10)
	6	Fluid-	- Air flow $w_g = 460 \text{ lb/hr}$ mixed with Water flow $w_f = 20,000 \text{ lb/hr}$, I	$G_f = 0.96$	(10)
	25	$P_v = 0$.5 psia, $P_1 = 100$ psia, $\Delta P = 36$ psi, $T_1 = 540$ °R, $X_T = 0.75$, $M = 0.75$	29.	
	3, 4, 2, 3	D=3	inch schedule 40, Valve is Globe valve with $C_d = 5$, $F_L = 0.90$,	,	
		$V_f = 0$.01607 ft ³ /lb.		
5.	a)	Explai	in the Orifice design criteria.		(10)
200			a typical Control room layout diagram and explain the guidelines to	o design	(10)
	2000	it.		200.611	(10)
j.	Write short note on:				
	YUNIVATO N		ol valve noise.	1	(10)
	b)	Bath to	ab curve and its significance in relation with Reliability.		(10)