

Duration: 3 Hours

Max. Marks 80

N.B.

- 1. Q.1 is compulsory. Attempt any three from the remaining questions.
- 2. All questions carry equal marks.
- 3. Figures to the Right indicate full marks.
- 3. Assume suitable data if necessary

Q.1 Attempt any four

20

- a. What is Quantization? Explain the difference between quantization and encoding.
- b. Determine steady state error for unit step, ramp and acceleration inputs for the following system.

$$\frac{0.2385(z+0.8760)}{(z-1)(z-0.2644)}$$

- c. Map the region from s-plane to the z-plane which is bounded by constant frequency lines at $\pm 5j$ and constant attenuation lines at ± 2 .
- d. Explain sampler as an impulse modulator.
- e. What are the advantages of Digital Control System.
- f. Obtain the pulse transfer function for the following system.

$$z(k+1) = \begin{bmatrix} 2 & -5 \\ 0.5 & -1 \end{bmatrix} z(k) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 2 & 0 \end{bmatrix} z(k)$$

Q.2 A. Explain working of ZOH device and derive its transfer function.

10

- B. What is Signal Flow Graph? Explain Mason's Gain formula by giving appropriate 10 example.
- Q.3 A. Determine the values of K for asymptotic stability of the system given by characteristic equation using Jury's stability criteria

$$P(z) = z^4 + 0.2z^3 - 0.25z^2 - 0.05z + K = 0$$

B. Represent the given system in companion form and Diagonal canonical form along with its block diagram realization.

$$T(z) = \frac{z^3 + 8z^2 + 17z + 8}{(z+1)(z+2)(z+3)}$$

Paper / Subject Code: 53201 / Digital Control System

Obtain state transition matrix for the system defined by

10

$$z(k+1) = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & -2 \\ 1 & 0 & -3 \end{bmatrix} z(k)$$

What is multirate sampling? Explain multirate output feedback based state esti- 10 mator.

The discrete time control system is given by

10

$$x(k+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -2 & -1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(k)$$

Design a state feedback controller to place closed loop poles at $-0.5 \pm j0.5$ and 0.

Explain discrete-time PID controller in detail.

10

Design the deadbeat full order observer for the system

10

$$\begin{array}{rcl} x(k+1) & = & \begin{bmatrix} 0.16 & 2.16 \\ -0.16 & -1.16 \end{bmatrix} x(k) + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u(k) \\ y(k) & = & \begin{bmatrix} 1 & 1 \end{bmatrix} x(k) \end{array}$$

Discretize the given system

10

$$G(s) = \frac{4500K}{s(s+361.2)}$$

with K = 14.5 and sampling period of Ts=0.5 sec.

Instrumentation.

(3 Hours)

Total Marks: 80

Note:

- 1. Question No.1 is compulsory
- 2. Solve any THREE questions out of remaining FIVE questions.
- 3. Figure to the right indicate full marks.
- 4. Assume suitable data if required.

Solve any 4

002

QS.

[20marks]

- Explain Aerodynamic and Hydrodynamic valve noise.
- b) Define control valve coefficient. Give the factors that affect this coefficient.
- Discuss the following terms related to reliability: MTTR and MTBF
- What is ergonomics? Give example of ergonomics applied to a product.
- What are the design considerations of an RTD?

Explain phases of Electronic product design.

[10marks]

A 3" Butterfly valve is to operate at the following conditions-

[10marks]

Fluid- Water at flow rate 330gpm

 $P_{z} = 0.4 \text{ psia}$

 $P_1 = 24psia$

 $P_2 = 15$ psia

d=3.068"

State whether the valve will cavitate or not, and if it cavitates, to what extent?

- Water at 15° C is flowing through 12 inch standard weight pipe (D= 12) at a rate [10marks] that will not exceed 2800gpm. It is proposed that a standard 60° opening Butterfly valve be used for control. Find size required, if p1 is computed to be 72.2psia and p_2 is 64.1psia.
- What is absolute calibration? Explain Thermocouple calibration using absolute method [10marks]

Paper / Subject Code: 53208 / Instrument and System Design

Q4.		
a)	Explain choked flow condition and expansion factor for gases.	[10mar
b)	Find valve size for the following conditions	[10ma
	Fluid - Benzene with fine non abrasive solids	
	G = 0.88	
	q = 450 gpm	
	$p_1 = 80 \text{ psia}$	
	$p_2 = 71 \text{ psia}$	
	$T_1 = 528^{\circ} R$	
1	D = 6 inch schedule 40	
V	Valve is characterized ball with C _d =25.	
Q5.	Write short note on	
á	a) Control room design layout	[10ma
ł	Protection standards for electrical enclosures.	[10ma
Q6.		
2	a) Explain the general selection criteria for transducers.	[10ma

b) Explain with diagram methods of control valve noise reduction.

[10marks

[10marks]