Examination Second Half 2022 under cluster (Lead College:) Examinations Commencing from 25th July 2022 to 3rd August 2022 Program: MCA Curriculum Scheme: 2 YR Examination: M.C.A Semester II Course Code: MCA21 and Course Name: Mathematical Foundation for Computer Science 2 Time: 2-hour 30 minutes Max. Marks: 80 Choose the correct option for following questions. All the Questions are | Q1. | Choose the correct option for following questions. All the Questions are | |------------|--| | Q2. | compulsory and carry equal marks. | | 1. | Objective function of an LP problem is | | Option A: | A constant | | Option B: | A function to be optimized | | Option C: | An inequality | | Option D: | A quadratic equation | | | | | 2. | Customers arrive at a reception counter at an average interval rate of 10 minutes. The receptionist takes an average of 6 minutes for one customer. Determine the average queue length. | | Option A: | 9/10 | | Option B: | 7/10 | | Option C: | | | Option D: | 3/10/20/20/20/20/20/20/20/20/20/20/20/20/20 | | | \$2\\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | | 3. | For finding an initial feasible solution in transportation problem method is used | | Option A: | Simplex 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | Option B: | Big-M | | Option C: | Least Cost Method | | Option D: | Hungarian | | 6 K 18 6 K | \(\tau_{\text{\tint{\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex | | 3333 | Monte Carlo simulation gets its name from which of the following? | | Option A: | Data collection S S S S S S S S S S S S S S S S S S S | | Option B: | Model formulation | | Option C: | Analysis | | Option D: | Random number assignment | | | Dummy row or column is added in an assignment problem | | Option A: | To increase the profit function | | Option B: | To balance total activities and total resources | | Option C: | To prevent a solution from becoming degenerate | | Option D: | To reduce the total cost of assignment | | | | | 6.6 | A person who leaves the queue by losing his patience to wait is said to be | | Option A: | Jockeying | | Option B: | Balking | | Option C: | Reneging | | Option D: | Collusion | | 7. | A feasible solution to an LP problem, | | | | | | | |---------------------|--|--|--|--|--|--|--| | Option A: | Must satisfy all of the problem's constraints simultaneously. | | | | | | | | Option B: | Need not satisfy all of the constraints, only some of them | | | | | | | | Option C: | Must be a corner point of the feasible region | | | | | | | | Option D: | Must optimize the value of the objective function | | | | | | | | | | | | | | | | | 8. | What is the value of the following game? | | | | | | | | | B1 B2 B3 B4 | | | | | | | | | A1 20 15 12 35 | | | | | | | | | A2 25 14 8 10 3 | | | | | | | | | A3 40 2 10 5 | | | | | | | | | A4 -5 4 11 0 0 | | | | | | | | | | | | | | | | | Option A: | | | | | | | | | Option B: | | | | | | | | | Option C: | | | | | | | | | Option D: | | | | | | | | | | | | | | | | | | 9. | The solution to a transportation problem with 'm' supplies & 'n' destinations is basic | | | | | | | | | feasible if number of positive allocations are | | | | | | | | Option A: | m+n | | | | | | | | Option B: | m+n+1 | | | | | | | | Option C: | m*n | | | | | | | | Option D: | m+n-1 | | | | | | | | 10. | Feasible region formed by the constraints $x+4y \le 4$, $3x+3y \ge 18$, $x \ge 0$ and $y \ge 0$ is: | | | | | | | | Option A: | reasible region formed by the constraints $x+4y \le 4$, $5x+3y \ge 18$, $x \ge 0$ and $y \ge 0$ is: | | | | | | | | Option A: Option B: | unbounded | | | | | | | | Option C: | lies first and second quadrant | | | | | | | | Option C: | does not exist | | | | | | | | Option D. | A more life exist a constant and c | | | | | | | | | D V C K V V V K V X X Y V V S S V X Y X Y X X X X X X X X X X X X X X X | | | | | | | | Q2.
(20 Marks Each) | Solve any tw | o question | s out of th | ree | 10 | 0 marks ea | ch | |------------------------|---|---|---|--------------|---------------|-------------|-------| | | Two manufactu
These are their
A1,B1 – Give of
A2,B2 – Decre
A3,B3 – Increa
A4,B4 – Maint | strategies:
coupons
ase Price
se Advertise | ement | e competing | for an increa | sed market | share | | A | Pay-off matrix optimum strate | below show | ws the incre | | | Firm A. Fir | nd th | | A | Pay-off matrix | below show | ws the incre | | | Firm A. Fir | nd th | | | Pay-off matrix | below show | ws the incre | value of the | | Firm A. Fir | nd th | | A | Pay-off
matrix | below show | ws the incre | value of the | game. | | nd th | | A | Pay-off matrix | below show | ws the incread B and the Fin B1 | rm B | game. | B4 | nd th | | A | Pay-off matrix optimum strate | below show
gies for A ar | ws the incre and B and the Fin B1 35 | rm B B2 65 | B3 25 | B4
5 | nd th | | | TV Model | Li | ne | | |---|---|-------|-------|-------------------------------| | | | Line1 | Line2 | | | | LCD | 3 | 1 | | | В | LED | 1 | 1 | | | | QLED | 2 | 6 | | | | | | | ne the number of days that th | | | function as minim
lines should be ru | | | ne the number of days that th | | Q3.
(20 Marks
Each) | Solve any | Solve any two questions out of three | | | | | | 10 marks each | | |---------------------------|--------------------------------|---|--|--|--|-------------------------------------|---------------|---------------|--| | | manufactu The transp P,Q,R are | ring centres
ortation cos
60,35 and 4 | s P,Q and l
st per ton a
10 respecti | R to depots
are given be
vely. The d | he best way
A,B,C,D,E
elow. The a
lemand at the
ribution sch | E.
vailability a
ne depots ar | at the centre | es | | | 447,7689 | | 20 00 00 00 00 00 00 00 00 00 00 00 00 0 | | Depot | | | | | | | | مح | 2 36 77 78 | A | В | С | D | Е | | | | | Manufacturing
Centres | P | 4 | 1 | 3 | 4 | 4 | | | | | unufactur
Centres | Q | 2 | 3 | 2 | 2 | 3 | | | | | X X | R | 3 | 5 | 2 | 4 | 4 | | | | B | Solve the f | Collowing L | | | | | | | | | | Minimize Z = | $=12x_1+20$ | X ₂ | | .6 | | | |---|--|---|--|--|--|--|--| | | subject to | | | | | | | | | 6x | $_{1} + 8x_{2} \ge$ | 100 | | | | | | | $7x_1$ | + $12x_2 \ge$ | 120 | | 2000 | | | | | and | | | | 82222 | | | | | X1, | $x_2 \! \geq \! 0$ | | | | 2000 | 35 8 X X X X X X X X X X X X X X X X X X | | | The owner of particular bra | • | • | bserved the | following d | emand patto | ern for a | | | Daily
Demand | 0 | 10 | 20 | 30 | 40 | 50 | | | Probability | 0.02 | 0.08 | 0.15 | 0.40 | 0.30 | 0.05 | | C | b) Probabilic) Averaged) Average | y for next
Assuming the Assuming Assumin | day is equal that he re the next day of cakes solo k out on an funsold cal | of to the number of the ceives 30 ceives 30 ceives 30 ceives a per day and a per day arns a profit | nber of cake
akes on the
he system for
if he does not of Rs.20 pe | s he deman
first day and
or the next | ded the I places an O days to | | Q4.
(20 Marks
Each) | Solve an | y two que | estions o | at of three | B /450° | | 10 marks o | each | |---------------------------|--------------------------|-------------|--------------------------|---------------------------|----------------|--------------|---|------| | | restrictions the table b | s which do | not allow
cost of ass | certain bu
signing bus | ses to ply o | on certain i | in technical
routes as sho
in the matri | | | | | | 60 C | Routes | | | | | | | | 36.00 | € R1 | R2 | R3 | R4 | R5 | | | | | B1 | 80 | 40 | - | 70 | 40 | | | | | B2 | - | 80 | 60 | 40 | 40 | | | | Buses | B3 | 70 | - | 60 | 80 | 70 | | | | | B4 | 70 | 80 | 30 | 50 | - | | | | | В5 | 40 | 40 | 50 | - | 80 | | | | | 1 | | | | ı | • | | | B | Solve the | following I | LPP using | Simplex M | lethod | | | | | | Maximize $Z = 7x_1 + 5x_2$ | X_2 | | | | |---|---|--|---|--|---------------------| | | subject to | | | | | | | $x_1 + 2x_2 \le$ | ≤6 | A B | | | | | $x_1 + 3x_2 \le$ | 12 | 2000 | | | | | and | | 2000 | | | | | $x_1, x_2 \ge 0$ | | | | | | | | | | | | | C | department to launch
has to select one of t
various levels of sale
What will be the man
Minimax (d) Regret | the types dependings. rketing manager's | ree different types. ng on the following decision if (a) Ma | The marketing estimated payo | manager
offs for | | C | department to launch
has to select one of t
various levels of sale
What will be the man | h a shampoo of the
the types depending
es.
rketing manager's
and (e) Laplace c | ree different types. ng on the following decision if (a) Ma | The marketing sestimated payout the stimated payout the stimax (b) Maximax (b) Maximax (b) | manager
offs for | | C | department to launch
has to select one of t
various levels of sale
What will be the man
Minimax (d) Regret | h a shampoo of the
the types depending
es.
rketing manager's
and (e) Laplace c | ree different types. ng on the following decision if (a) Ma riterion is applied | The marketing sestimated payout the stimated payout the stimax (b) Maximax (b) Maximax (b) | manager
offs for | | C | department to launch has to select one of t various levels of sale What will be the ma Minimax (d) Regret Type of | h a shampoo of the types depending es. rketing manager's and (e) Laplace c | ree different types. ng on the following decision if (a) Ma riterion is applied mated Level of Sal | The marketing estimated payo ximax (b) Maxi | manager
offs for | | C | department to launch has to select one of t various levels of sale What will be the man Minimax (d) Regret Type of Shampoo | h a shampoo of the the types depending es. rketing manager's and (e) Laplace c Esti | ree different types. ng on the following decision if (a) Ma riterion is applied mated Level of Sal 10000 | The marketing estimated payout ximax (b) Maxives | manager
offs for | Program: Master of Computer Applications Curriculum Scheme: MCA 2 YEAR COURSE Examination: MCA First Year Semester - II Course Code: <u>MCA22</u> and Course Name: <u>Artificial Intelligence and Machine Learning</u> Time: 2 Hrs 30 Mins Max. Marks: 80 Section I - MCQS (20 Marks) Section II - Subjective (60 Marks) ______ #### **Section I** Note to the students: - All the Questions are compulsory and carry equal marks. | Q1. | The effectiveness of an SVM depends upon: | |-----------|--| | Option A: | Selection of Kernel | | Option B: | Kernel Parameters | | Option C: | Soft Margin Parameter C | | Option D: | All of the above | | | | | Q2. | Choose the correct option regarding machine learning (ML) and artificial intelligence (AI) | | Option A: | ML is a set of techniques that turns a dataset into a software | | Option B: | AI is a software that can emulate the human mind | | Option C: | ML is an alternate way of programming intelligent machines | | Option D: | All of the above | | | | | Q3. | Which of the following is not supervised learning? | | Option A: | Naive Bayesian | | Option B: | PCA | | Option C: | Linear Regression | | Option D: | Decision Tree | | 00000000 | <u> </u> | | Q4. | Which of the following is a widely used and effective machine learning algorithm based on the idea of bagging? | | Option A: | Decision Tree | |
Option B: | Regression | | Option C: | Classification | | Option D: | Random Forest | | Q5. | Which of the following can improve the performance of an AI agent? | | Option A: | Learning | | Option B: | Perceiving | | Option C: | Observing | | Option D: | All of the above | | | Which of the following can improve the performance of an AI agent? | |-----------|--| | Q6. | The network that involves backward links from output to the input and hidden | | | layers is known as | | Option A: | Recurrent neural network | | Option B: | Self organizing maps | | Option C: | Perceptrons | | Option D: | Single layered perceptron | | Q7. | A perceptron is | | Option A: | Single layer feed-forward neural network with pre-processing. | | Option B: | Double layer auto-associative neural network | | Option C: | Auto-associative neural network | | Option D: | Neural network that contains feedback | | Q8. | Advantage of Decision Tree | | Option A: | Possible Scenarios can be added | | Option B: | Use a white box model, if given result is provided by a model | | Option C: | Worst, best and expected values can be determined for different scenarios | | Option D: | All of the above | | | | | Q9. | Which of the following search algorithms requires less memory? | | Option A: | Depth First Search | | Option B: | Linear Search | | Option C: | Optimal Search | | Option D: | Breadth-First Search | | Q10. | The problem of finding hidden structure in unlabeled data is called | | Option A: | Unsupervised Learning | | Option B: | Supervised Learning | | Option C: | Reinforcement Learning | | Option D: | Rote Learning | | | | | Q2 | Solve any Two Questions out of Three | 10 marks each | |------|--|------------------------| | A | Explain K-Means clustering Algorithm with pro | oper steps. | | B | Describe Principal Component Analysis (PCA) | with suitable example. | | COST | Explain any two types of agents with architectur | re. | | 20 | Q3 | Solve any Two Questions out of Three | 10 marks each | |-----|----|---|--| | 1 | | | | | 200 | A | Use A* algorithm to find the path and cost | from start state(S) to goal state (G). | | Q4 | Solve any Two Questions out of Three | 10 marks each | |-------|--|-------------------------| | A | Describe the support vector machine with advant | ages and disadvantages. | | Booo | Describe Bayesian networks with suitable examp | le. | | Canan | Explain Random forest algorithm in detail with s | teps. | Examinations Commencing from 25th July 2022 to 3rd August 2022 Program: Master of Computer Applications Curriculum Scheme: (MCA 2year) –(R-2020-21) Examination: M.C.A Semester II Course Code: MCA23and Course Name: Information Security Time: 3Hours Max. Marks: 80 | ~ \$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | |--| | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | | Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks | |-----------|---| | 1. | The operation of a cipher usually depends on a piece of auxiliary information, called | | Option A: | Plain text | | Option B: | Cipher Text | | Option C: | Key This to the second | | Option D: | Cipher S S S S S S S S S S S S S S S S S S S | | - | \$\text{3}\text{5}\text | | 2. | The mechanism used for authenticating a user only once is called as | | Option A: | Single Sign On | | Option B: | System Security Office | | Option C: | Single Sign Off | | Option D: | Single Security Opportunity | | • | | | Q3. | Cryptanalysis is used | | Option A: | To find some insecurity in a cryptographic scheme. | | Option B: | To increase the speed. | | Option C: | To encrypt the data. | | Option D: | To make new ciphers. | | | | | 45 | MD5 produces bits hash data | | Option A: | | | Option B: | | | Option C: | | | Option D: | | | 188885 | | | 2015685 | If the recipient of a message has to be satisfied with the identity of the sender, the | | | principle comes into picture. | | Option A: | Integrity | | Option B: | Access control | | Option C: | Authentication | | Option D: | Confidentiality | | 6.6.6. | PGP Key Management has the following functionality | | Option A: | Every user is own CA | | Option B: | Cannot forms a "web of trust" | | Option C: | Users cannot revoke their keys | | Option D: | Rely on certificate authorities | | 2000 | V 6 2 | | 7. | To encrypt a message from Alice to Bob using public key cryptography, which of | |-----------
---| | | the following is needed? | | Option A: | Alice's private key | | Option B: | Alice's public key | | Option C: | Bob's private key | | Option D: | Bob's public key | | | 20000 2000 2 | | 8. | A attack involves the passive capture of a data unit and its subsequent retransmission to produce an unauthorized effect | | Option A: | Release of message contents | | Option B: | Replay | | Option C: | Masquerade | | Option D: | Traffic analysis | | | | | 9. | A Substitution Box of DES provides | | Option A: | Diffusion only | | Option B: | Confusion only | | Option C: | Both diffusion and confusion | | Option D: | Neither diffusion nor confusion | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | Q10. | Intrusion detection approach that involves the collection of data relating to the | | | behavior of legitimate users over a period of time. | | Option A: | Statistical anomaly detection | | Option B: | Rule-based detection | | Option C: | Audit Records | | Option D: | Penetration identification | | Q2
(Total 20 Marks) | | | |------------------------|---|-------------------------------| | | Solve any Two | 5 Marks Each | | | Explain algorithm modes CBC uses for sec | cret key cryptography. | | SSS it SSSS | Explain Cross-Certification. | | | | Using Euclidean algorithm, find the graph following: i. 300 and 42 ii. 88 and 220 | reatest common divisor of the | | PONE BOOK | Solve any One | 10 Marks Each | | | What is Message Digest? Explain the work | king of MD5 in detail. | | | Discuss Inference. What are the various ap | proaches to deal with it? | | Q3
(Total 20 Marks) | | | |------------------------|--|-------------------| | | Solve any Two | 5 marks each | | | Explain the various Information Security principle | es. | | | What is intrusion detection? What are the various systems used for detecting intrusions? | | | ins | In an RSA cryptosystem, a particular A uses two | prime numbers p = | | | 13 and q =17 to generate her public and private keys. If the public key of A is 35. Then the private key of A is? | | |----|---|---------| | В | Solve any One 10 Mark | ks Each | | i | Explain PGP to provide security? Discuss the concept of PC and rings. | P keys | | ii | What is Kerberos? Explain the working of Kerberos | | | Q4
(Total 20 Marks) | | | |------------------------|---|---| | A | Solve any Two | 5 marks each | | i | Differentiate between Symmetric and | Asymmetric Cryptography | | ii | What are Firewalls? Discuss its types. | | | iii | Explain MAC in detail. | | | В | Solve any One | 10 Marks Each | | i | Discuss SSL as an internet security pruse at SSL? | otocol and three major protocol | | ii | Explain one round structure of DES. | 1000 000 000 000 000 000 000 000 000 00 | ## University of Mumbai Examination First Half 2022 **Program:** MCA Curriculum Scheme: MCA 2-year Course Examination: M.C.A First Year Semester II Course Code: MCAE242 and Course Name: Internet of Things Time: 2 hours 30 mins Max. Marks: 80 | Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks | 2 Marks
each | |---------------------------------------|--|---| | 1. | An M2M device in "ETSI architecture" connects to the Network Domain either directly or through an | 2 Marks | | Option A: | M2M Area Network | 8 | | Option B: | M2M Router | () () () () () () () () () () | | Option C: | M2M Gateway | O' | | Option D: | M2M Switch | | | 2. | Which of the
following is not the characteristics of IoT? | 2 Marks | | Option A: | No Unique Identity | | | Option B: | Self-Configuring Self-C | | | Option C: | Interoperable Communication Protocols | | | Option D: | Dynamic & Self-Adapting | | | 3. | In IoT design methodology steps, Information Model specification focuses on which class of the domain model? | 2 Marks | | Option A: | Virtual Entity | | | Option B: | Physical Entity Entit | | | Option C: | Services | | | Option D: | Resource | | | 4.77 | The concept of using and adapting Web protocols to connect anything in the physical world and give it a presence on the World Wide Web is called | 2 Marks | | Option A: | Internet of Things | | | Option B: | Web of Things | | | Option C: | Cloud of Things | | | Option D: | Internet of Everything | | | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | Smart inventory management for retail uses which of the following? | 2 Marks | | Option A: | RFID tags | | | Option B: | PIR Sensor | | | Option C: | Ultrasonic sensor | | | Option D: | LDR | | | 6.6. | The physical entity is considered in which sub-model of IoT reference model? | 2 Marks | | Option A: | IoT Communication Model | | | Option B: | IoT Information Model | | | Option C: | IoT Functional Model | | | Option D: | IoT Domain Model | | | 7. | Modbus Protocol enables communication between approximately | 2 Marks | |-----------|--|---| | 7. | devices connected to the same network. | 2 Marks | | Option A: | 247 | 20,000 | | Option B: | 327 | | | Option C: | 360 | | | Option D: | 427 | | | | X 2 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 2018/2016 | | 8. | In which types of attack, the attacker has direct access to the IoT device or infrastructure? | 2 Marks | | Option A: | Software Attack | 1200000 | | Option B: | Chip Layer Attacks | 2222 | | Option C: | Device Layer Attacks | 6833 | | Option D: | Network Attack | 1,685 | | - | | 320,76 | | 9. | Which of the following cloud computing services offers entire IT computing | 2 Marks | | | infrastructure, provisioned and managed over the internet. | | | Option A: | SAAS | N. C. | | Option B: | PAAS TO SEE S | 2 | | Option C: | IAAS SANGER SANG | | | Option D: | NAAS SEE SEE SEE SEE SEE SEE SEE SEE SEE | | | - | 5×8×8×25×8500000000000000000000000000000 | | | 10. | Which of the following IoT level has single node, data is stored and analyzed on cloud. | 2 Marks | | Option A: | Level-1 IoT System | | | Option B: | Level-2 IoT System | | | Option C: | Level-3 IoT System | | | | | | | Q. 2 | Solve any Two Questions out of Three | | |------|---|----------| | A | Define IoT. State and explain various characteristics of IoT. | 10 marks | | В | Explain IoT Domain Model with the help of diagram. | 10 marks | | Co | Explain need for IoT security. | 10 marks | | Q. 3 | Solve any Two Questions out of Three | | |------|---|----------| | A | Explain application of IoT in Smart City and Retail. | 10 marks | | В | Explain IoT system design methodology steps in detail? | 10 marks | | S C | What are different State of Art Architectures and Reference Model? Explain Any two of them. | 10 marks | | Q. 4 | Solve any Two Questions out of Three | | |--------------|--|----------| | CAC | Illustrate the IoT level 1 and level 2 with diagram. | 10 marks | | \mathbf{B} | Explain the Cloud of things architecture with suitable diagram. | 10 marks | | C | What are issues of IoT Standardization. Discuss SCADA Standardization Efforts. | 10 marks | **Program: Master of Computer Applications** Curriculum Scheme: CBCGS Examination: MCA FIRST YEAR SEMESTER-II Course Code: MCAE251 and Course Name: Natural Language Processing Time: Max. Marks: 80 Section I - MCQS (20 Marks) Section II - Subjective (60 Marks) Paper Code: 95985 #### Section I ## Note to the students: - All the Questions are compulsory and carry equal marks. | Q.1 | The foundation of speech and language technology lie in? | |-----------|---| | Option A: | Electrical Engineering | | Option B: | Mathematics | | Option C: | Computer Science | | Option D: | All of the above | | Q.2 | How the word "processing" is stemmed using porter stemmer? | | Option A: | process | | Option B: | processing | | Option C: | processy | | Option D: | None of the above | | | 5 4 5 6 6 6 7 | | Q.3 | Knowing the probability of whole sentence or strings of words is useful in | | Option A: | Word-sense-disambiguation | | Option B: | Parts-of-speech tagging | | Option C: | Probabilistic parsing | | Option D: | All of the above | | Q.4 | Context free grammar consists of | | Option A: | Rules or production | | Option B: | Lexicon of words and symbols | | Option C: | All of the above | | Option D: | None of the above | | Q.5 | A relation that holds between words that have the same form with unrelated meanings is called | | Option A: | hyponymy | | Option B: | Polysemy | | Option C: | homonymy | | Option D: | homographs | ## Paper Code: 95985 | Q.6 | In which approach all the sense definitions of the word to be disambiguated are retrieved from the dictionary | |-----------|---| | Option A: | Bootstraping | | Option B: | Dictionary-based | | Option C: | Naïve bayes | | Option D: | Decision list | | | | | Q.7 | How many morphemes are present in the word "happiness" | | Option A: | 1 | | Option B: | 2 | | Option C: | 3 | | Option D: | 4 | | Q.8 | Which tagger uses probabilistic and statistical information to assign tags to words? | | Option A: | Rule Based | | Option B: | Statistical | | Option C: | POS | | Option D: | Stochastic | | Q.9 | CFG consist of | | Option A: | Rules, productions, order of element | | Option B: | Set of productions | | Option C: | Set of rules | | Option D: | Order of elements | | Q.10 | Which of the following is a kind of text summarization? | | Option A: | History-based summarization | | Option B: | Summarizing a text or article | | Option C: | Topic-based summarization | | | | #### SECTION II #### Q2 Solve any two out of three (10 Marks each) 20 marks - A. What is Word Sense Disambiguation? Explain Dictionary-based approach. - B. What is Text Summarization? Explain different types of Text Summarization techniques with example. - C. What is POS? Explain Stochastic POS-tagging. # Paper Code: 95985 #### Q.3 Solve any two out of three (10 Marks each) 20 marks - A. Describe Hidden Markov Model (HMM). - B. What are Lexical Semantics and lexemes? Explain relation between different lexemes. - C. Explain morphological parsing with FST. #### Q.4 Write Short note on following (Any 4) 20 Marks - A. Regular Expression - B. Inflectional and Derivational Morphology - C. Generic NLP system - D. Text Classification - E. Sentiment Analysis - F. Noun Phrases #### **Examination First Half (Summer-2022)** Program: MCA (2 Year Course) Curriculum Scheme:(R-2021-22) Examination: 1T00162 / MCA (Sem-II) (R-2021-22) (2 Year Course) Course Code: 70661 / Elective 2: Design & Analysis of Algorithm Time: 2 hours 30 minutes Max. Marks: 80 ## Paper Code 95989 | Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks | |-----------|---| | 1. | Dijkstra's algorithm is used to solve problems? | | Option A: | Network lock | | Option B: | Single pair shortest path | | Option C: | All pair shortest path | | Option D: | Sorting | | 2. | Which of the following is used for solving the N Queens Problem? | | Option A: | Greedy Algorithm |
| Option B: | Dynamic Programming | | Option C: | Backtracking | | Option D: | Sorting | | | | | 3. | Hamiltonian path problem is ? | | Option A: | NP Problem | | Option B: | P class Problem | | Option C: | NP Complete Problem | | Option D: | N class problem | | 4. | What is the time complexity of the binary search algorithm? | | Option A: | O(n) | | Option B: | O(1) | | Option C: | O(log2n) | | Option D: | O(n2) | | 5. | of an algorithm is the amount of time required for it to execute. | | Option A: | Time complexity | | Option B: | Space complexity | | Option C: | Compiling time | | Option D: | Best case | Paper code - 95989 | 6. | The recursive versions of binary search use a structure. | |-----------------|---| | Option A: | Branch and bound | | Option B: | Dynamic programming | | Option C: | Divide and conquer | | Option D: | Simple recursive | | 7. | If a problem can be broken into subproblems which are reused several times, the problem possesses property. | | Option A: | Overlapping subproblems | | Option B: | Optimal substructure | | Option C: | Memoization | | Option D: | Greedy | | 8. | Which of the following problems should be solved using dynamic programming? | | Option A: | Mergesort | | Option B: | Binary search | | Option C: | Longest common subsequence | | Option D: | Quicksort | | 9.
Option A: | Which of the following branch and bound strategy leads to breadth first search? LIFO branch and bound | | Option B: | FIFO branch and bound | | Option C: | Lowest cost branch and bound | | Option D: | | | Option D. | Highest cost branch and bound | | 10. | What is a Rabin and Karp Algorithm? | | Option A: | String Matching Algorithm | | Option B: | Shortest Path Algorithm | | Option C: | Minimum spanning tree Algorithm | | Option D: | Approximation Algorithm | | Q2 | Solve any Two Questions out of Three | 10 marks each | |----|---|-----------------------------------| | A | Explain MERGE sort using divide and conquer N | Methodology. | | В | What do you mean by efficiency of a program' recursive algorithms. | ? Calculate the efficiency of non | | С | Solve given 0/1 Knapsack problem using dynamaximum weight the knapsack can hold is Wichoose from. Their weights and values are present W1=1 V1=1 W2=2 V2=6 W3=5 V3=18 W4=6 V4=22 W5=7 V5=28 | is 11. There are five items to | Paper code 95980 | Q3 | Salva and T | 1 4-00 | code | 320 | |----|---|-------------|-------------|-----------| | Q5 | Solve any Two Questions out of Three | 10 ma | rks each | | | A | Explain Naïve string-matching algorithm with an e | vamala | | | | В | Find Single source shortest path/s from the sour algorithm by applying greedy approach. | ce vertex | S' using D | ijkstra's | | С | Define backtracking, explain 4 queen problems usin draw the state diagram. | g backtrack | ing techniq | ue and | | Q4. | Solve | any Two | Questio | ns out of | Three | 10 marks each | |-----|---------|-----------|----------|-----------|----------------------------|--------------------------------| | A | Define | NP Hard | and NP | -comple | te problem in | datail | | В | Wilat C | io you m | ean by E | ranch and | d Bound techn
examples. | ique? Explain LIFO Search, FIF | | | Solve g | given 15- | puzzle p | roblem us | sing branch and | d bound technique. | | | 1 | 2 | 3 | 4 | | | | | 5 | | 6 | 8 | | , Y, | | | 9 | 10 | 7 | 11 | | | | | 13 | 14 | 15 | 12 | | | | C | Giver | arrange | ment | 4.1 | | | | | 1 | 2 | 3 | 4 | | | | | 5 | 6 | 7 | 8 | - | | | | 9 | 10 | 11 | 12 | | | | | 13 | 14 | 15 | | 1 | | | - | Goal a | rrangem | ent | |] | | Program: Master of Computer Applications Curriculum Scheme: MCA (2year – 2020 Course) Examination: MCA First Year SEMESTER II Course Code: MCAE254 and Course Name: Digital Marketing and Business Analytics Time: 3 hour Paper code, -95992 Max. Marks: 80 | Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks | |-----------|--| | 1. | Which of the following items is not a component of Quality Score? | | Option A: | Ad relevance | | Option B: | Maximum cost-per-click bid | | Option C: | Landing page experience | | Option D: | Expected click through rate | | 2. | Digital marketing is often referred to as | | Option A: | Online marketing | | Option B: | Internet marketing | | Option C: | Web marketing | | Option D: | All of the above | | 3. | Which of the following marketing based on very small, specific geographical locations like neighborhoods or even specific streets? | | Option A: | Hyperlocal marketing | | Option B: | SMS marketing | | Option C: | QR codes | | Option D: | All of the above | | 4. | Which of the following keyword choice help search engines to learn better on the web page? | | Option A: | Targeting synonyms and related keywords of the main keyword | | Option B: | Targeting the highest searched keywords only | | Option C: | Copying competitor keywords | | Option D: | Inserting keywords in the text | | 5. | Among the following, which is the best definition for a Twitter trend? | | Option A: | Most recent celebrity post that has a lot of followers | | Option B: | Word, phrase or topic that is tagged at a greater rate | | Option C: | The most recent news accompanied by media | | Option D: | A recently fashionable idea that has gathered a lot of followers | | 6. | The objectives for web analytics are likely to concern: | | Option A: | Facebook messages | | Option B: | Personal Blog activity | | Option C: | Social Media ROI | | Option D: | Measurement of web site performance | | 7. | Which factor among these doesn't influence the edge in the EdgeRank Algorithm? | Paper code. 95992 | Option A: | Weight | |-----------|---| | Option B: | Time Decay | | Option C: | Device | | Option D: | Affinity score | | | | | 8. | Which of the following best explains bounce rate? | | Option A: | Percentage of single-page visits | | Option B: | Percentage of secondary visits | | Option C: | Percentage of people who exit the site | | Option D: | Percentage of pages visited by a user | | 9. | Which design approaches help in building sites that are optimized for various screen sizes? | | Option A: | Mobile optimized design | | Option B: | Progressive enhancement | | Option C: | Responsive web design | | Option D: | Adaptive web design | | 10. | Which of the following best describes LinkedIn? | | Option A: | A photo-sharing app | | Option B: | A professional networking site | | Option C: | A website to share videos of any length | | Option D: | A social network used for connecting with family and friends | | Q2. | Solve any Two Questions out of Three. (10 marks each) | 20 marks | | | |---|---|----------|--|--| | A What are the advantages of mobile advertising? Explain the various tools available in mobile marketing. | | | | | | В | What is SEO? Explain the concept of on-page optimization in detail. | | | | | C | Explain the various buying models available in display advertising. | | | | | Q3. | Solve any Two Questions out of Three. (10 marks each) | 20 marks | | |-----|--|------------|--| | A | How do you build a successful social media strategy as marketer? | | | | В | B What are the best practices in the content strategy for the Twitter platform? Exp its unique features. | | | | C | What is web analytics? Explain the key metrics associated with web a | analytics. | | | Q4. | Solve any Two Questions out of Three. (10 marks each) 20 marks | |-----|--| | A | Explain LinkedIn analytics and LinkedIn targeting options for in detail. | | В | What is multi channel attribution? Explain different multi channel attribution models in detail. | | С | Explain Facebook Marketing Strategies in detail. |