ME/SEM-I (CBSGS)/INST & control / Applied Linear Algebra

O.P. Code: 30541 (3 Hours) [Total Marks: 80 N.B.: (1) Questions No.1 is compulsory. (2) Assume suitable data wherever necessary. (3) Answer any three from the remaining five questions. 1. Briefly explain any four: (a) Basis vector (b) Linear vector space (c) Moore Penrose inverse (d) Quadratic form (e) Condition number of a matrix 2. (a) Consider a system of equations Ax = b. Assume that 'b' is not in the column space of the matrix A. Suggest a method to find out the least square error solution for the system. 10 (b) Find a least square error solution for the system Ax = bWhere $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$ 3. (a) Differentiate between column space and null space of a matrix 10 Let $A = \begin{bmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}$ $b = \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix}$ Check whether 'b' is in the column space of A. (b) What do you mean by linear independence of vectors? 10 Determine whether $S = \begin{cases} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 3 & 4 & 5 \end{cases}$ is linearly independent.

TURN OVER

5

5

10

4. Let a matrix A can be factored as

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 6 & 0 & 0 \\ 0 & 2\sqrt{6} & 0 \\ 0 & 0 & \frac{\sqrt{6}}{100} \end{bmatrix} \quad \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

- (a) Identify the type of factorization and explain.
- (b) Obtain the factorization of inverse of the matrix (A).
- (c) Express A as the sum of three square matrices of the order 3.
- (d) Define rank and condition no. of a matrix. Find the rank and condition number of the matrix A.

$$A = \begin{bmatrix} 1 & -3 & 5 \\ 2 & -4 & 7 \\ -1 & -2 & 1 \end{bmatrix}$$

- (b) What is QR decomposition? Explain briefly.
- 6. (a) What are the applications of diagonalization? Find a transformation matrix that diagonalizes A,

Where,
$$A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$

(b) Check the definiteness of the following matrix using pivots, determinant and eigenvalues.

$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

ME (Ingle) Code: 30544

(3 Hours) Total Marks: 80

N.	B:	(1)	Q.1 is compulsory.		
		(2)	Attempt any three questions from the remaining questions.		
		(3)	Assume suitable data wherever necessary.		
		(3)	2 Issumo Sultable data wholevel necessary.		
1.	Attempt the following:				
	(a)	Stat	e and explain by which inductance of a coil varies.		
	(b)	Exp	lain the architecture of smart sensors.		
	(¢)	Con	npare photovoltaic and photoconductive modes used for operation of		
		pho	todiode		
	(d)	Exp	lain in brief signal processing of capacitive transdeers.		
2.	(a)	Exp	lain with block diagram basic and auxillary functional elements of the	1.0	
	. ,	syst		10	
	(b)		lain construction, characteristics and applications of microsensors.	10	
			(5)	10	
3.			cribe signal processing of high output impedance sensors.	10	
	(b)		e the types of potentiometers and also explain the following:	10	
		(i)	Major resolution O		
		0.00	Minor resolution		
		(111)	Apperant resolution		
4.	(a)	Exp	lain DC to DC converter for noise reduction.	10	
	(b)	State	e and explain the problems encountered in driving and processing signals	10	
		fron	n remotely located bridge circuits. Discuss remidies.		
5.	(a)		lain the encoders with the following:	10	
		(i)	Working principle		
			Types		
			Resolution	12	
	0)		Measurement of direction and velocity		
	(b)	Exp	lain communication and computational capabilities of SMART transducers.	10	
		116.	te a short note on :		
0.		(H)		20	
	30	(ii)	Gaurding techniques Accelerometer		
	-	(11)	Acceleration		

ME/ ACT/DEC 2015/I

QP Code: 30546

	(3 Hours) [Total Marks	: 80]
N	 (1) Question No. 1 is compulsory. (2) Attempt any three questions from remaining five questions. (3) Assume suitable data if necessary. (4) Figures to the right indicate full marks. 	
1.	Answer the following:	20
	 (a) Explain what is system identification and methods of system identification. (b) Explain importance of integral controller with example. (c) Compare ZOH and FOH. (d) Differentiate MRAC and MIAC. 	
2.	(a) Explain dead beat controller with example.	10
	(b) Define MIT rule and obtain MIT rule for feedforward gain.	10
3.	(a) Explain any two methods of DC value estimation.	10
	(b) Explain how RLS method of parameter estimation is used for a stochastic signal model?	10
4.	(a) What are the methods of building deterministic state controller? Draw and explain the general adaptive state controller scheme.	10
	(b) Explain RCS method of parameter estimation for time varying processes.	10
5.	(a) Consider the process $G(s) = \frac{1}{s(s+a)}$, where a is unknown parameter. Design a	10
	Controller such that the closed loop transfer function becomes $G_m(s) = \frac{w_n^2}{s^2 + 2w_n s + w_n^2}$	
	(b) Derive the adaptive minimum variance control for RLS-MV4.	10
6.	Write short notes on:	20
	 (a) Minimum variance control. (b) Square root filtering (c) Non-dual adaptive controllers. (d) Tuning of controllers. 	

Sen-I-(cosus)-INST&Cont - Bio-Instrumentation & Imaging

QP Code: 30549 Nov-15

Duration: 03 hrs

Marks: 80 marks

Question No. 1 is compulsory. Answer any 3 from the remaining 5 questions)

	the remaining 5 questions)	(91)
	1. a) Explain need and working of Advanced Instrumentation Amplifier	· A
	and its advantages over classical Instrumentation amplifier.	(05)
	b) Explain the principle and working of TENS. c) Explain the need for sub-carriers in Bio-telemetry system	(05)
	c) Explain the need for sub-carriers in Bio-telemetry system.	(05)
	d) Give the block diagram of Central Nurse station and explain, in brief.	(05)
	2. a) Explain in detail with a diagram, 6-lead ECG signal conditioning system.	(10)
	b) Explain with a neat diagram the working of Gamma Carnera Imaging system.	(10)
	3. a) What is Cardioversion? With a neat schematic explain cardioverter system.	(10)
	b) What are Isolation Amplifiers? Explain with a neat diagram the working	
	of Carrier-type Isolation amplifiers.	(10)
	4. a) What is a Bionic ear? Explain its working by comparing with natural ear.	(10)
	b) Explain various image reconstruction techniques used in MRI systems.	(10)
	5. a) Explain the working of Telemedicine system with neat diagram.	(10)
	b) Explain the various Grounding techniques used in Biomedical systems	
	for optimal performance.	(10)
į.	Write short notes on: (05 each)	* *
	a) Arrythmias in ECG b) Multichannel DAS	6
	c) Refinal Implant d) PET	9

BB-Con. 9817-15.