CMPN | Paper/Subject Code: 50901/Applied Mat Q. P. Code: 24408 | Sem-III - choice based | Nov-2018 | Marks: 80

- NB-1. Question No.I is compulsory
 - 2. Attempt any three from the remaining six questions
 - 3. Figures to the right indicate full marks

Qla If Laplace transform of
$$erf(\sqrt{t}) = \frac{1}{s\sqrt{s+1}}$$
, then find $L\{e^t.erf(2\sqrt{t})\}$ [20]

- **b** Find the Orthogonal Trajectory of the family of curves given by e^{-x} . $\cos y + x \cdot y = c$
- c Find Complex Form of Fourier Series for e^{2x} ; 0 < x < 2
- d. If the two regression equations are 5x 6y + 90 = 0, 15x 8y 180 = 0,

find the means of x and y, the Correlation Coefficient and Standard deviation of x if variance of Y is 1

Q2 Show that the function is Harmonic and find the Harmonic Conjugate
$$v = e^x \cdot \cos y + x^3 - 3xy^2$$
 [6]

b Find Laplace Transform of
$$f(t) = \begin{cases} t & \text{; } 0 < t < 1 \\ 0 & \text{; } 1 < t < 2 \end{cases}$$
, $f(t+2) = f(t)$ [6]

c. Find Fourier Series expansion of
$$f(x) = x - x^2, -1 < x < 1$$
 [8]

23 a Find the Analytic function
$$f(z) = u + iv$$
 if $v = \log(x^2 + y^2) + x - 2y$ [6]

b Find Inverse Z transform of
$$\frac{3z^2 - 18z + 26}{(z-2)(z-3)(z-4)}$$
, $3 < |z| < 4$ [6]

Solve the Differential Equation
$$\frac{d^2y}{dt^2} + 4y = f(t)$$
, $f(t) = H(t-2)$, $y(0) = 0$, $y'(0) = 1$ using Laplace Transform [8]

O4 a Find
$$Z\{f(k) * g(k)\}\$$
if $f(k) = \left(\frac{1}{2}\right)^k$, $g(k) = \cos \pi k$ [6]

[6]

X	60	30	37	30	42	37	55	45
Y	50	25	33	27	40	33	50	42

c Find the inverse Laplace transform of i)
$$\frac{3s+1}{(s+1)^4}$$
 ii) $\frac{e^{4-3s}}{(s+4)^{5/2}}$ [8]

Q. P. Code: 24408

Q5 a Find Inverse Laplace Transform using Convolution theorem
$$\frac{1}{(s-4)^2(s+3)}$$

b Show that the functions $f_1(x) = 1$, $f_2(x) = x$ are Orthogonal on (-1,1). Determine the constants a, b such that the function $f(x) = -1 + ax + bx^2$ is Orthogonal to both $f_1(x)$, $f_2(x)$ on the (-1,1)

c Find the Laplace transform of i)
$$e^{-3t} \int_{0}^{t} t \sin 4t \, dt$$
 ii) $\int_{0}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt$

Q6 a Fit a second degree parabola to the given data

X	1	1.5	2	2.5	3	3.5	4
Y	1.1	1.3	1.6	2	2.7	3.4	4.1

bFind the image of
$$\left|z - \frac{5}{2}\right| = \frac{1}{2}$$
 under the transformation $w = \frac{3 - z}{z - 2}$

c Find Half Range Cosine Series for $f(x) = x \sin x$ in $(0,\pi)$ and hence find $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$

CMPN / Paper / Subject Code: 50902 / Digital Logic Design and Analysis / NOV-2018 Sem-III - Choice based

Duration: - 3 Hours

Marks: 80 Marks

NB:	- Question 1 is compaisory	
	Solve any three questions from the remaining.	0.00
1)4
	c) Convert (-89) ₁₀ to its equivalent Sign Magnitude, 1's Complement and	04 04 \
	2's Complement Form d) Perform (BC5) _H - (A2B) _H without converting to any other base e) Prove De Morgans theorem	04 04
		100
2a.	Given the logic expression: $A + \overline{BC} + AB\overline{D} + ABCD$ 1. Express it in standard SOP form.	10
	2). Draw K-map and simplify.3). Draw logic diagram using NOR gates only.	
2b.	Reduce using Quine McClusky method & realize the operation using only NAND gates.	10
	$F(A,B,C,D) \neq \prod M(0,2,3,6,7,8,9,12,13)$	
3a.	Design a 4-bit binary to gray code converter.	10
3b.	Design a 4-bit BCD adder using IC 7483 and necessary gates.	10
4a.	Constitution and A-1 multiplexers with the	10
4b		10
5a	Design a mod-6 synchronous counter using T FF	10
5b	Explain the operation of 4-bit universal shift register.	10
6	Write short notes on any two	20
A 15 1	a. VHDL	
5-	b. TTL and CMOS logic families	
200	c: 4-bit Magnitude comparator d. 3 to 8 line decoder	
and the same of th		

Paper / Subject Code: 50903 / Discrete Structures OP CODE: 40416 NOV-18

Sem: III choice Based

(3 Hours)

[Total Marks: 80]

N.B (1) Question No. 1 is compulsory.

- (2) Solve any three questions out of remaining five questions.
- (3) Assumptions made should be clearly stated.
- (4) Figures to the right indicate full marks.

Q.1 (a) Two dice are rolled, find the probability that the sum is

[6M]

(i) Equal to 1 (ii) Equal to 4 (iii) Less than 13

(b) Use the laws of logic to show that $[(p \rightarrow q) \land \neg q] \rightarrow \neg p$ is a tautology

[6M]

(c) Determine the matrix of the partial order of divisibility on the set A.Draw the Hasse diagram of the [8M] Poset.Indicate those which are chains

(1) $A = \{1,2,3,5,6,10,15,30\}$

(2) $A = \{3,6,12,36,72\}$

Q.2 (a) Find the complement of each element in D_{42} .

[6M]

(b) Let Q be the set of positive rational numbers which can be expressed in the form 2a 3b, where a and b are integers. Prove that algebraic structure (Q, .) is a group. Where . is multiplication [6M] operation.

(c) Define isomorphic graphs .Show whether the following graphs are isomorphic or not . [8M]

Fig (a)

[6M] Q.3 (a) Determine which of the following graph contains an Eulerian or Hamiltonian circuit.

Fig(a)

Fig(b)

(b) For all sets A, X and Y show that

$$A \times (X \cap Y) = (A \times X) \cap (A \times Y)$$

[6M]

(c) Let f(x) = x+2, g(x) = x-2 and h(x) = 3x for $x \in R$, Where R = Set of real numbers. Find [8M] (g, f), (f, g), (f, h), (h, g), (h, f), (f, h, g)

Q.4(a) Let R is a binary relation. Let $S = \{(a, b) \mid (a, c) \in R \text{ and } (c, b) \in R \text{ for some } c\}$ Show that if R is an equivalence relation then S is also an equivalence relation. [6M]

TURN OVER

Paper / Subject Code: 50903 / Discrete Structures QP CODE: 40416

- (b) Determine the generating function of the numeric function a_r , where [6M]
 - (i) $a_r = 3^r + 4^{r+1}, r \ge 0$
 - (ii) $a_r = 5$, $r \ge 0$
- (c) Consider the (3, 6) encoding function e:B³ \rightarrow B⁶ defined by e(000)= 000000 e(001)= 001100 e(010)= 010011 e(011)= 011111 e(100)= 100101 e(101)= 101001 e(110)= 110110 e(111)= 111010

Decode the following words relative to a maximum likelihood decoding function.

- (i) 000101 (ii) 010101
- Q.5 (a) Determine the number of positive integers n where $1 \le n \le 100$ and n is not divisible by 2, 3 or 5.
 - (b) Use mathematical induction to show that 1+5+9+...+(4n-3)=n (2n-1)
 - (c) Find the greatest lower bound and least upper bound of the set {3, 9, 12} and {1, 2, 4, 5, 10} if they exists in the poset (z+, /). Where / is the relation of divisibility. [8M]
- Q.6 (a) Let $A = \{1,2,3,4\}$ and Let $R = \{(1,1) (1,2) (1,4) (2,4) (3,1) (3,2) (4,2) (4,3) (4,4)\}$. Find transitive closure by Warshall's algorithm.
 - (b) Let $H = \{[0]_6, [3]_6\}$ find the left and right cosets in group Z_6 . Is H a normal subgroup of group of Z_6 .
 - (c) Find the complete solution of the recurrence relation $a_n + 2 a_{n-1} = n+3$ for $n \ge 1$ and with $a_0 = 3$

	Duration: 3 Hours	Total Marks: 80				
	N.B: (1) Question No. 1 is Compulsory (2) Attempt any three questions of the remaining five (3) Figures to the right indicate full marks (4) Make suitable assumptions wherever necessary wi					
1.	 (a) What are various operations possible on data structures? (b) What are different ways of representing a Graph data structure on a computer? (c) Describe Tries with an example. (d) Write a function in C to implement binary search. 					
2.	(a) Use stack data structure to check well-formedness of parentheses expression. Write C program for the same.	in an algebraic (10)				
	(b) Given the frequency for the following symbols, compute the Huffm symbol. Symbol A B C D E Frequency 24 12 10 8 8	an code for each (10)				
3.	perform the following operations: i. Inserting in a priority queue ii. Deletion from a queue iii. Displaying contents of the queue (b) What are expression trees? What are its advantages? Derive the ex	(12)				
4.	following algebraic expression: (a + (b/c)) * ((d/e) - f) (a) Write a C program to represent and add two polynomials using link (b) How does the Quicksorf technique work? Give C function for the sa	(08) ed list. (12) me. (08)				
5.	(a) What is a doubly linked list? Give C representation for the same.	(05)				
	(b) Given the postorder and inorder traversal of a binary tree, construct Postorder: DEFBGLJKHCA Inorder: DBFEAGCLJHK (c) What is hashing? What properties should a good hash function dem	(10)				
5.	(a) Given an array int a[] = {69, 78, 63, 98, 67, 75, 66, 90, 81}. Calculate base address is 1600.					
0.00	(b) Give C function for Breadth First Search Traversal of a graph. Explair example.	n the code with an (10)				
	(c) Write a C program to implement a singly linked list. The program sho perform the following operations:	ould be able to (08)				
	(i) Insert a node at the end of the list (ii) Deleting a particular element (iii) Display the linked list					

Page 1 of 1

Sem-III - choice Based

Q. P. Code: 26300

(3 Hours)

(Total Marks: 80

N.B.: 1. Question ONE is compulsory.

- 2. Solve any **THREE** out of remaining questions.
- 3. Draw neat and clean diagrams.
- 4. Assume suitable data if required.
- Q. 1. A. Explain the concept and significance of CMRR and Slew Rate in case of op-amps.
 - B. Given β =120 and I_E = 3.2 mA for a common-emitter configuration with r_0 = ∞ Ω , determine:
 - (a) Zi
 - (b) A_v if a load of 2 $k\Omega$ is applied.
 - (c) A_i with the 2 $k\Omega$ load.

5

C. Discuss the factors that influence modulation index of an FM wave.

5

D. Justify that adaptive delta modulation superior to delta modulation.

5

Q. 2 A. The emitter bias configuration as shown in following figure has the specifications:

$$I_{CQ} = \frac{1}{2}I_{Csat}$$
 $I_{Csat} = 8 \text{ mA}$ $V_C = 18 \text{ V}$ and $\beta = 110$

Determine Rc, RE and RB.

10

B. Explain how op-am can be used comparator and zero crossing detector.

10

5

10

5

A. What is the source of the leakage current in a transistor? If the emitter current of a transistor is 8 mA and I_B is 1/100 of I_C, determine the levels of Ic and IB.

- B. Draw and explain Colpitts oscillator.
- 5 C. Explain principle of FDM. 5
- D. Determine the output voltage for the circuit if V_1 =5V and V_2 =3V

5 A. What is DSBSC wave and explain its generation using balanced modulator. Q. 4 10

B. What is multiplexing in communication system? Draw block diagram of TDM-PCM system and explain.

A. State Shannon's theorem on channel capacity. Q. 5

What is the maximum capacity of a perfectly noiseless channel whose bandwidth is 120 Hz, in which the values of the data transmitted may be indicated by any one of the 10 different amplitudes? 10

- B. With respect to neat diagram explain the elements of analog communication system.
- 10 A. What is meant by Nyquist rate in sampling and explain its significance. 5
 - B. Give the proper definition for entropy and information rate. 5
 - C. Write short note on op-amp as differentiator. 5
 - D. Differentiate between Class A and Class C power amplifiers with respect to circuit diagram, operating cycle and power efficiency.