Paper / Subject Code: 49301 / APPLIED MATHEMATICS-III / NOV. 2019

Time Duration: 3Hr

Total Marks: 80

- N.B.:1) Question no.1 is compulsory.
 - 2) Attempt any three questions from Q.2to Q.6.
 - 3) Figures to the right indicate full marks.
- Q1. a) Find the Laplace transform of $e^{-4t}t \sin 3t$.
 - b) Find the half-range cosine series for f(x) = x, 0 < x < 2. [5]
 - c) Find $\nabla \cdot \left(r \nabla \frac{1}{r^3}\right)$. [5]
 - d) Show that the function $f(z) = \sin z$ is analytic and find f'(z) in terms of z. [5]
- Q2. a) Find the inverse Z-transform of $F(z) = \frac{1}{(z-5)^3}$, |z| < 5.
 - b) Find the analytic function whose imaginary part is $e^{-x}(y \sin y + x \cos y)$. [6]
 - c) Obtain Fourier series for the function $f(x) = x + x^2$, $-\pi \le x \le \pi$ and [8] $f(x + 2\pi) = f(x)$.

 Hence deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ and $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$
- Q3. a) Find $L^{-1} \left[\frac{1}{(s-a)(s-b)} \right]$ using convolution theorem. [6]
 - b) Is $S = \left\{ \sin\left(\frac{\pi x}{4}\right), \sin\left(\frac{3\pi x}{4}\right), \sin\left(\frac{5\pi x}{4}\right), \dots \right\}$ orthogonal in (0, 1)?
 - Using Green's theorem in the plane evaluate $\int_c (xy + y^2)dx + (x^2)dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$.
- Q4. a) Find Laplace transform of $f(t) = \begin{cases} \sin 2t & \text{if } 0 < t \le \frac{\pi}{2} \\ 0 & \text{if } \frac{\pi}{2} < t < \pi \end{cases}$ and
 - $f(t) = f(t + \pi).$ b) Prove that a vector field \overline{f} is irrotational and hence find its scalar potential $\overline{f} = (x^2 + xy^2) i + (y^2 + x^2y)j$.
 - c) Find the Fourier expansion for $f(x) = \sqrt{1 \cos x}$ in (0, 2π). Hence deduce that $\frac{1}{2} = \sum_{1}^{\infty} \frac{1}{4n^2 1}$.
- Q5.a) Use Gauss's Divergence Theorem to show that $\iint_S \nabla r^2 \overline{ds} = 6V$ where S is any closed surface enclosing a volume V.
 - b) Find the Z-transform of $f(k) = b^k$, k < 0.

 [6]
 c) i) Find $L^{-1} \left[\frac{s}{(s-2)^6} \right]$.
 - ii) Find $L^{-1} \left[\log \left(1 + \frac{a^2}{s^2} \right) \right]$.
- Q6.a) Solve using Laplace transform
 - $(D^2 + 9)y = 18t$, given that y(0) = 0 and $y(\frac{\pi}{2}) = 0$ b) Find the bilinear transformation which maps the points $Z=\infty$, i, 0 onto W=0 i, ∞
 - c) Find Fourier integral representation of $f(x) = e^{-|x|} \infty < x < \infty$. [8]

Time Duration: 3Hr

Total Marks: 80

- N.B.:1) Ouestion no.1 is compulsory.
 - 2) Attempt any three questions from Q.2to Q.6.
 - 3) Figures to the right indicate full marks.
- Q1. a) Find the Laplace transform of $e^{-4t}t \sin 3t$. [5]
 - Find the half-range cosine series for f(x) = x, 0 < x < 2[5]
 - [5] c) Find $\nabla \cdot \left(r \nabla \frac{1}{r^3}\right)$
 - Show that the function $f(z) = \sin z$ is analytic and find f'(z) in terms of z. [5]
- Find the inverse Z-transform of $F(z) = \frac{1}{(z-5)^3}$, |z| < 5. [6] Q2. a)
 - [6]
 - Find the analytic function whose imaginary part is $e^{-x}(y \sin y + x \cos y)$. Obtain Fourier series for the function $f(x) = x + x^2$, $-\pi \le x \le \pi$ and [8] $f(x+2\pi)=f(x).$ Hence deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ and $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$
- Q3. a) Find $L^{-1}\left[\frac{1}{(s-a)(s-b)}\right]$ using convolution theorem. [6]
 - b) Is $S = \left\{ \sin\left(\frac{\pi x}{4}\right), \sin\left(\frac{3\pi x}{4}\right), \sin\left(\frac{5\pi x}{4}\right), \dots \right\}$ orthogonal in (0, 1)? [6]
 - [8] c) Using Green's theorem in the plane evaluate $\int_C (xy + y^2) dx + (x^2) dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$.
- Find Laplace transform of $f(t) = \begin{cases} \sin 2t & , o < t \le \frac{\pi}{2} \\ 0 & , \frac{\pi}{2} < t < \pi \end{cases}$ and [6] Q4. a)
 - $f(t) = f(t+\pi).$ b) Prove that a vector field \vec{f} is irrotational and hence find its scalar potential [6] $\bar{f} = (x^2 + xy^2) i + (y^2 + x^2y)j$.
 - c) Find the Fourier expansion for $f(x) = \sqrt{1 \cos x}$ in (0, 2π). Hence deduce [8] that $\frac{1}{2} = \sum_{1}^{\infty} \frac{1}{4n^2 - 1}$
- [6] Use Gauss's Divergence Theorem to show that $\iint_S \nabla r^2 ds = 6V$ where S is any closed surface enclosing a volume V.
 - b) Find the Z-transform of $f(k) = b^k$, k < 0. [6] [8]
 - c) i) Find $L^{-1}\left[\frac{s}{(s-2)^6}\right]$ ii) Find $L^{-1} \left[\log \left(1 + \frac{a^2}{s^2} \right) \right]$
- Q6.a) Solve using Laplace transform [6] $(D^2 + 9)y = 18t$, given that y(0) = 0 and $y(\frac{\pi}{2}) = 0$
 - b) Find the bilinear transformation which maps the points Z=∞, i, 0 onto [6]
 - c) Find Fourier integral representation of $f(x) = e^{-|x|} \infty < x < \infty$. [8]