Paper / Subject Code: 50921 / Engineering Mathematics-III

SE | Sem - 111 | CMPN | C-2019 | SH-2023

	, S S
(Time: 3 Hours)	Max Marks: 80
N.B. (1) Question No. 1 is compulsory. (2) Answer any three questions from Q.2 to Q.6.	THE THE STATE OF
(3) Use of Statistical Tables permitted. (4) Figures to the right in Part of the state of the s	19 10 16 16 16 16 16 16 16 16 16 16 16 16 16
(4) Figures to the right indicate full marks	
Q1.	The state of
(a) Find the Laplace transform of cos 2t sin t	J. 1595
(b) Find k such that $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \frac{kx}{x}$ is analy	tic C OS1
(c) Calculate the Spearman's rank correlation coefficient R	of the
X: 10, 12, 18, 18, 15, 40. Y: 12, 18, 25, 25, 50, 25.	[5]
(d) Find the inverse Laplace transform of $\log \left(\frac{s^2 + a^2}{s^2 + a^2}\right)$.	all all all
$\log \left(\frac{1}{s^2 + b^2} \right)$) (5)
Q2. 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	S 83
(a) A continuous random variable has probability density function	
$f(x) = k(x-x^2), 0 \le x \le 1.$	3 8 1
Find k, mean and variance. $f(x) = 0$ other	erwise
	1 [6]
	[6]
(c) Obtain the Fourier series to represent $f(x) = x^2$ in $(0, 2\pi)$	The The
Hence show that $\frac{\pi^2}{12} = \frac{1}{1^2} = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{3^2} + \cdots$	[8]
Q3. 162 170 10 15 153 164 164 164 164 164 164 164 164 164 164	
(a) If the imaginary part of the analytic function $w = u + iv = f($	
$V = x^2 - y^2 + \frac{x}{x^2 + y^2}$, then show that $u = -2xy + \frac{y}{x^2 + y^2}$	Z) is [6]
(b) Find inverse Laplace transform of $\frac{2s^2 - 6s + 5}{(s^3 - 6s^2 + 11s - 6)}$	y2 .
(c) Fit a second-degree personal is $(s^3 - 6s^2 + 11s - 6)$	[6]
(c) Fit a second-degree parabolic curve and estimate y when $x = x$: 1, 2, 3, 4, 5, 6, 7, 8, 9.	10
y 2, 6, 7, 8, 10, 11, 11, 10, 9.	
	[8]
Q4.	
(a) Obtain the Fourier series to represent $f(x) = x^3$ in $(-\pi, \pi)$.	[6]
(b) Find (i) the equation of the lines of Regression (ii) coefficient of the following data	of correlation for
X: 65, 66, 67, 67, 68, 69, 70, 72.	
Y: 67, 68, 65, 66, 72, 72, 69, 71.	, I
(c) Prove that $\int_0^\infty e^{-\sqrt{2}t} \frac{\sin t \sin ht}{\sin t} dt = \frac{\pi}{2}$.	[6]
2 101 t 201 8.	[8]

Paper / Subject Code: 50921 / Engineering Mathematics-III

Q5.

(a) Find the orthogonal trajectories of the family of curves x^3y

(b) Find the moment generating function of the distribution -2

X PX = x):

FIRST NAME

hence find first four central moments.

(c) Obtain the half range cosine series of f(x) = x in (0, 2)

Hence show that

Q6.(a) Using convolution theorem Find the inverse Laplace transform of $\left[\frac{S^2}{(S^2+2^2)^2}\right]$

(b) The probability density function of a random variable X is

X P(X=x):

2k 3k

 $2k^2$

Find k, p(X<5), P(X>5)

(c) If $v = 3x^2y + 6xy - y^3$ show that v is harmonic function

And find the corresponding analytic function .

Paper / Subject Code: 50922 / Discrete Structures & Graph Theory

SE/CMPN/SEM. TIT/C-2019/NOV. 2023

Time: 3 Hours

Total Marks: 80

13

1) Q.1 is compulsory.

2 Salve any 3 questions out of remaining 5 questions.

3) Assumptions made should be clearly stated.

4) Draw the figures wherever required.

Q1 Solve any four of the following questions.

a) Prove using Mathematical Induction that $2 + 5 + 8 + \dots + (3n-1) = n(3n+1)/2$

Explain the term poset. Consider a set D₁₆₅. Find the elements of this set & draw the basse diagram for this poset.

How many strings of length 7 either begin with 2 zeros or end with 3 ones?

Explain the term partition set with suitable example.

Estate the Pigeonhole principle and show that If there are 10 marbles in the jar & you marbles of the same colour.

Q.2

Let A={0, 1, 2, 3, 4, 5}

10

i) Explain the term group.

ii) Prepare the composition table for the above set w.r.t. the operation of addition modulo 6.

iii) Determine whether it is a group.

iv) Whether elements of set A are invertible? If yes, then find the inverses of these elements.

v) Determine whether it is a cyclic group.

b

Let
$$A = \{a_1, a_2, a_3, a_4, a_5\}$$
 and let R be a relation on A whose matrix is:
$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_R = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Find out transitive closure of R using Warshall's algorithm.

0.3

a) A large software development company employs 100 computer programmers. Of them, 45 are proficient in Java, 30 in C#, 20 in Python, six in C# and Java, one in Java and Python, five in C# and Python, and just one programmer is proficient in all three languages above.

38552

Paper / Subject Code: 50922 / Discrete Structures & Graph Theory

Determine the number of computer programmers that are not proficient in any of these three languages.

b) Explain the terms Conjunctive & Disjunctive Normal Form with suitable examples.

c)

Determine the sequence b_n whose recurrence relation is $b_n = 2b_{n-1} + 1$ with initial condition $b_1 = 7$.

Q.4
a) What is a lattice? Determine whether following hasse diagram represents a lattice.

b) 5 3 4 2 2 4 3 4 3 6

Consider (3, 8) an encoding function $e: B^3 \to B^8$ defined as

- e (000) = 00000000
- e (001) = 10111000
- e(010) = 00101101
- e(011) = 10010101
- e(100) = 10100100
- e(101) = 10001001
- e (110) = 00011100
- e(111) = 00110001

How many errors can 'e' detect & correct?

c) What are the necessary conditions for the isomorphism between 2 graphs? Determine 8 whether following 2 graphs are isomorphic.

Q.5
a) If the addition & multiplication modulo 10 is defined on a set of integers A={0, 2, 4, 6, 8}. Then determine whether this algebraic system is a ring.

Paper / Subject Code: 50922 / Discrete Structures & Graph Theory SE/CMPN/SEM-III/C-2019 b) A function $f: R \to R$ is defined by $f(x) = x^2$ Is it i) injective ii) surjective iii) bijective c) Define the terms Euler path & a circuit . Determine whether following graphs have Euler path or a circuit. Q.6 a) Explain the following terms with suitable example (any 4) i) Hamiltonian path & circuit ii) Bipartite graph iii) Adjacency matrix iv) Equivalence relation v) Cartesian product Solve the following using the laws of logic ~p∧~q∧r)↔pvqvr 8 $f: R \to R$ is defined by $f(x) = x^3$ $g: R \to R$ is defined by $g(x) = 4x^2 + 1$ $h: R \rightarrow R$ is defined by h(x) = 7x - 2

Find the rule defining

ii) gof

iv) go(hof)

i) fog

iii) (goh)of

Duration:3 Hours

Total Marks: 80

- N.B: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions out of the remaining five questions.
 - (3) Figures to the right indicate full marks.
 - (4) Make suitable assumptions wherever necessary with proper justifications.
- Q.1. A) Define ADT with an example. [05]
 - B) Evaluate the postfix expression "94*28+-" using stack ADT. Show the process stepwise. [05]
 - C) Justify the statement with suitable example: "Circular queue overcomes the [05] disadvantage of linear queue".
 - D) Differentiate between linear search and binary search. [05]
- Q.2. A) Construct Huffman tree and determine the code for each symbol in the string "BCAADDDCCACACAC". [10]
 - B) Discuss the cases of deleting a node from Binary Search Tree with suitable [10] example.
- Q.3. A) Write a program in C to implement queue ADT using linked list. [10]
 - B) Construct an AVL tree by inserting the following elements in the given [10] order. Apply necessary rotations wherever required. 54, 12, 24, 68, 85, 99, 42, 27, 87, 80
- Q.4. A) Write C function for BFS graph traversal. Show the stepwise BFS traversal [10] with the help of data structures for the following graph:

- B) Write functions in C to perform the following operations on the Doubly [10] Linked List:
 - i) Delete a node after given node.
 - ii) Find node with smallest data value.
 - iii) Display the list.
 - iv) Insert a node at the end of the list.
- Q.5. A) Build a Binary Search Tree, given the following sequences: [05] Inorder: 35, 41, 48, 52, 57, 72, 79, 85, 86, 90

Preorder: 57, 41, 35, 52, 48, 90, 72, 85, 79, 86

B) What is topological sort? Explain Topological Sorting with an example. [05]

6 P.code 39186

Paper / Subject Code: 50923 / Data Structure

What is collision? Using linear probing, insert the following values in the hash table of size 11 & count the no. of collisions:
 83, 53, 64, 25, 39, 96, 12,71.

9. P.code

SE/CMPN/SEM-III/C-2019/NOV. 2023

Time: 3 Hours Max. Marks: 80

Instructions:

- 1) Question Number 1 is compulsory.
- 2) Solve any three questions out of remaining five questions.
- 3) Each Question carry 20 marks.
- 4) Illustrate your answers with neat sketches wherever necessary.
- 5) Figures to the right indicate full marks.
- 6) Assume suitable additional data, if necessary and clearly state it.
- 7) All sub-questions of the same question should be grouped together.
- Q.1 (a) i.) Simplify the Boolean expression: A AND (B OR (C AND D)) using Boolean algebra rules.
 - ii.) Create a truth table for the following circuit: A AND (B OR C).

 - (c) Discuss the significance of Decoders in address decoding. Provide the truth table for a 3-to-8 Decoder.
 - (d) Draw and explain Microinstruction sequencing organization. 05
- Q.2 (a) A block-set associative cache memory consists of 128 blocks divided into four block sets. The main memory consists of 16,384 blocks and each block contains 256 eight-bit words.
 - i.) How many bits are required for addressing the main memory?
 - ii.) How many bits are needed to represent the TAG, SET and WORD fields?
 - (b) What is bus arbitration? Explain any two techniques of bus arbitration?
- Q.3 (a) Draw and explain the operation of a Master-Slave J-K Flip-Flop with PRESET and CLEAR. How does it differ from a regular J-K flip-flop?
 - (b) Explain the concept of a microprogrammed control unit and compare it with a hardwired control unit. Describe the advantages and disadvantages of using a microprogrammed control unit.
- Q.4 (a) Explain how the NAND gate can be used as a universal logic gate. Provide examples of how it can be used to implement other logic gates.
 - (b) How Booth's multiplication algorithm can be used to multiply (-10)₁₀ and (-7)₁₀ binary numbers. Show the intermediate steps involved in the multiplication process and explain how the final result is obtained.

10

Q.5	(a)	Perform the following binary arithmetic operations and show the	10	
		intermediate steps and the final result.		
		i.) Add the following Binary Coded Decimal (BCD) numbers: (0101) + (1001).	. 5	
		ii.) Subtract the following binary numbers using 2's complement representation: (10101) - (01110).	3	
		iii.) Multiply the following binary numbers using 1's complement representation: (1101) * (1010).	N. S.	
		iv.) Divide the following binary numbers using 2's complement representation: (101101) / (110).	30	
		v.) Perform addition in hexadecimal for the numbers: (2A) + (1B).		
	(b)	What is Pipeline Hazard? Give the types of pipeline hazards. Write a	10	
		difference between delayed branch and branch prediction.		
		ST ST ST ST ST	300	
Q.6	(a)	Draw instruction cycle state diagram with interrupt.	05	
	(b)	What is State Table Method used for design Hardwired Control unit?	05	
	(c)	Compare with suitable parameters SRAM with DRAM.	05	
	(d)	Draw the neat block diagram for Flynn's classification.		
	(-)	In the state of the diagram for 1 tylin's classification.	05	

Paper / Subject Code: 50925 / Computer Graphics SE | sem-111 | CMPN | C-2019 | NON-2023 Time: 3 Hours **Total Marks: 80** 1. Question No. 1 is compulsory N.B. 2. Attempt any 3 from remaining questions. 3. Assume any suitable data if necessary and justify the assumptions. Q.1 Attempt any Four 1. Compare DDA and BRESENHAM line drawing algorithm.

5. Define Projection, Describe perspective projection with neat diagram

1. Derive window to viewport coordinate transformation.

1. Derive Mid-point circle generation algorithm.

2. Derive matrix for 2D rotation transformation.

2. Give pseudo code for 4-connect Boundary fill algorithm.

4. Explain with neat diagram composite transformation for scaling.

2. Give properties of Bezier curve.

2. Give principles of animation

Q.6 Attempt any Four

1. Explain point clipping algorithm.

1. Given a triangle ABC where A(0,0), B(10,10) and C(20,0), scale the given triangle ABC 2unit in X direction and 0.5-unit in Y direction. Find out the new coordinate of triangle ABC

2. Explain with neat diagram Sutherland and Hodgman polygon clipping algorithm in detail.

1. Explain with neat diagram Area Sub division (Warnock's) algorithm to remove hidden

3. Give transformation matrix for 3D - Translation, Scaling, Rotation (about x, y, z axis)

5. Given a line AB where A(0,0) and B(1,3) find out all the coordinate of line AB using DDA

20

20

20

2. Give application of computer graphics. 3. Explain with neat diagram rasterization. 4. Give fractal dimension of KOCH curve.

Q.2

Q.3

Q.4

Q.5

algorithm.

37894

2 .P. code

after scaling.

Page 1 of 1