Q. P. Code: 547400

DURATION: 3 HRS.

MAX. MARKS:80

- D Question No. 1 is compulsory.
- Attempt any THREE of the remaining.
- Figures to the right indicate full marks.
- Determine the constants a, b, c, d, e if

$$f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3 + 4xy) \text{ is analytic.}$$
 (5)

- B) Find half range Fourier sine series for $f(x) = x^2$, 0 < x < 3. (5)
- Find the directional derivative of $\varphi(x,y,z)=xy^2+yz^3$ at the point (2,-1,1) in the direction of the vector $\mathbf{i}+2\mathbf{j}+2\mathbf{k}$. (5)
- DEvaluate $\int_0^\infty e^{-2t} t^5 \cosh t \ dt$. (5)
- Prove that $J_{\frac{3}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} \cos x \right)$ (6)
- $\exists \text{If } f(z) = u + \text{iv is analytic and } u v = e^{x}(\cos y \sin y), \text{ find } f(z) \text{ in terms of } z.$ (6)
- Obtain Fourier series for $f(x) = x + \frac{\pi}{2}$ $-\pi < x < 0$ $= \frac{\pi}{2} x \quad 0 < x < \pi$

Hence deduce that
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 (8)

Show that $\overline{F} = (2xy + z^3)i + x^2j + 3xz^2k$, is a conservative field. Find its scalar potential and also find the work done by the force \overline{F} in moving a particle

Show that the set of functions $\{\sin(2n+1)x\}$, n=0,1,2,... is orthogonal over

Hence construct orthonormal set of functions. (6)

[TURN OVER]

C) Find (i)
$$L^{-1}\{\cot^{-1}(s+1)\}$$

(ii)
$$L^{-1}\left(\frac{e^{-2s}}{s^2+8s+25}\right)$$
 (8)

- (6) A) Prove that $\int J_3(x) dx = -\frac{2J_1(x)}{x} J_2(x)$
 - B) Find inverse Laplace of $\frac{s}{(s^2+a^2)(s^2+b^2)}$ (a $\neq b$) using Convolution theorem. (6)
 - \bigcirc Expand $f(x) = x \sin x$ in the interval $0 \le x \le 2\pi$ as a Fourier series.

Hence, deduce that
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} = \frac{3}{4}$$
 (8)

Using Gauss Divergence theorem evaluate $\iint_S \bar{N} \cdot \bar{F} ds$ where $\bar{F} = x^2 i + z j + y z k$

and S is the cube bounded by
$$x = 0$$
, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$ (6)

- B) Prove that $J_2'(x) = \left(1 \frac{4}{x^2}\right)J_1(x) + \frac{2}{x}J_0(x)$ (6)
- Solve $(D^2+3D+2)y = 2(t^2+t+1)$, with y(0)=2 and y'(0)=0 (8) by using Laplace transform
- Evaluate by Green's theorem for $\int_{c} (e^{-x} \sin y \, dx + e^{-x} \cos y \, dy)$ where C is the the rectangle whose vertices are (0,0), $(\pi,0)$, $(\pi,\pi/2)$ and $(0,\pi/2)$ (6)
 - Show that under the transformation $W = \frac{z-i}{z+i}$, real axis in the z-plane is mapped onto the circle |w| = 1
 - The Fourier Sine integral representation for $f(x) = \frac{e^{-ax}}{x}$ (8)

ETERX/Sem-TIT (CBSQS)/ Electronics Devices/ Nov. -16

Q.P. Code: 547301

	(3 Hours)	[Total Marks	: 80
K.B. :	(1) Question no. 1 is compulsory . Solve any three questions of	out of remaining.	
	(2) Assume suitable data wherever applicable.		
	(3) Draw neat and clean diagrams.		
	alva any form		
	 For diodes, define forward voltage drop, maximum forward resistance, reverse saturation current and reverse breakdown 		5
(b) For diodes, discuss different types of junction breakdo	AATR CO.	5
	e) Write short note on HBT.	7	5
(d) Sketch the characteristics of PN junction solar cell and	explain.	5
	e) Explain the two terminal MOS structure.	•	5
L(z)	Explain the construction and working of Gunn diode with V-I	characteristics.	10
(5)	Compare Enhancement type and Depletion type MOSFE of their construction, working principle, characteristics and		10
3.(a)	Explain characteristics of Zener diode. Explain Zener di	ode as voltage	10
	regulator.		
(b)	With neat diagram explain minority carrier distribution in an operating in forward active mode.	n npn transistor	10
H.((2))	Explain the non ideal effects in case of BJT. Explain base will in detail.	dth modulation	10
(5)	Discuss Ebers-Moll model for BJT in detail.		10
	Explain the operation of photodiode and avalanche photoe	diode.	5
(51)	Draw and explain VI characteristics of DIAC.		5
6(2)	Discuss construction and working of SCR with its character	ristics in detail.	10
E.(12)	For a n-channel JFET with $l_{DSS} = 8 \text{ mA}$, $V_p = -4 \text{V}$		10
	\blacksquare If $I_D = 3$ mA calculate the value of VGS		
	Calculate $V_{DS (SAT)}$ for $I_D = 3mA$		
	Calculate transconductance (g _m)		
(5)	Discuss the structure and working of MESFET. Draw V-I	characteristics	10

and explain.

===x/sem-III (CBSGS)/Digital Circuits & Design/Nov. 16

QP Code :547501

(3 hours)

Total Marks:80

N.B.:

- 1. Question No. 1 is compulsory.
- 2. Attempt any 3Questions from the remaining 5 Questions
- 3. Assume suitable data, wherever necessary

<u>Q. No</u>	Solve any four	Marks
$\mathbb{Q} \; \mathbb{L}(z)$	Write a truth table of half adder and write a VHDL code for half adder	5
Q L(b)	Explain advantages of JTAG architecture	5
Q L(c)	Explain advantages and drawback of synchronous counter.	5
Q1.(d)	Explain the following terms: 1. Noise margin 2. Noise immunity 3. Propagation delay with reference to digital ICs	5
Q L(e)	Differentiate between multiplexer and demultiplexer	5
(E.(a)	Design a Meal type sequence detector to detect three or more consecutive 1's in string of bits coming through an input line.	10
Q2(b)	What are universal gates? Why are they called so? Implement XOR and XNOR function using all NAND gates.	10
¥360	X O X	10
	ICLK	

Analyze the sequential state machine shown in figure and obtain state diagram for

excitation table for JK flip flop and convert JK flip flop to T flip flop.

Draw a circuit diagram of 2 input TTL NAND gate and Explain the interfacing of 10 TTL and CMOS.

Turn Over

- Q4.(b) Design a MOD10 asynchronous counter using T flip flop
- Q5(a) Design a combinational circuit using a suitable PAL considering the following Boolean expressions. Use a PAL with four inputs and four outputs and three wide AND OR structure.
 W(a,b,c,d)=∑m(2,12,13)
 X(a,b,c,d)=∑m(7,8,9,10,11,12,13,14,15)
- Q5(b) Design 4 bit Johnson counter using J-K flip flop. Explain its working using waveform
- Q6(a) Write short notes on
 - 1. Stuck at zero and stuck at 1 fault.
 - 2. Entity declaration and architecture declaration.
 - 3. FPGA architecture
 - 4. State reduction and state assignment.

QP Code: 547600

(3 Hours)

[Total Marks: 80

5

5

M.B.: (1) Question No. 1 is compulsory.

501

- (2) Solve any three questions out of remaining five questions.
- (3) Figures to the right indicate full marks.
- (4) Use Smith Chart for transmission line problem.

Find the equivalent inductance of the network shown.

A series R-L circuit is shown in fig. has a constant voltage V applied at t = 0. At what time does $V_R = V_L$

For the network shown plot poles and zeros of the transfer impedance function.

[TURN OVER

5

10

10

5

3

(d) Determine h parameters of the network given.

(a) Find the current through 6Ω resistor in given circuit.

(b) In the network shown switch is moved from position 1 to position 2. The switch is at position 1 for long time. Determine the expression for the current i(t).

(a) Test whether $F(s) = \frac{2s^3 + 2s^2 + 3s + 2}{s^2 + 1}$ is a positive real function.

(b) Check the whether the following polynomials are Hurwitz or not. Use continued fraction method.

(i)
$$P(s) = s^7 + 2s^6 + 2s^5 + s^4 + 4s^3 + 8s^2 + 8s + 4$$

(i)
$$P(s) = s^7 + 2s^6 + 2s^5 + s^4 + 4s^3 + 8s^2 + 8s + 4$$

(ii) $P(s) = s^5 + s^3 + s$

(c) Realise caur forms of the following LC impedance function.

$$Z(s) = \frac{10s^4 + 12s^2 + 1}{2s^3 + 2s}$$
 [TURN OVER

10 In the network given the switch is changed from position a to b at

t = 0. Find out i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$

- The volves of primary constants of an open wire line per km are R = 10Ω , L = 3.5 mH C = 0.008 μF and G = 0.7 μmho . For a signal frequency of 1 KHz. Calculate z_0 , Υ , α , β , λ and V_p
- Find the expression for i(t).

- Design an m-derived T section high pass filter with a cut off frequency 5 KHz. Design impedance of 700Ω and m = 0.6.
- The cha. impedance of a high frequency line is 100Ω . It is terminated 5 impedance of $100 + j100\Omega$. Using Smith chart find the impedance
 - wavelength away from the load end.

6. (a) Draw and explain transformed network in s domain for given circuits. 5
Use current and voltage equation.

- (b) A series RLC circuit has a quality factor of 5 at 50 rad/sec. The current flowing through the circuit at resonance is 10A and the supply voltage is 100V. Find the circuit constants.
- (c) For the given network determine $\frac{v_2}{v_1}$ and $\frac{v_2}{t_1}$

	(3 Hours)	Total: 80
N.B.	 Question No.1 is compulsory. Answer any three questions from remaining. 	
1)	Attempt any four	
	a) Define transducer. List different types of transducers.b) Draw Schering Bridge and list applications.	5
	c) Draw a neat labeled McLeod Gauge system diagram	5
	d) Explain measuring principle of 'Q' meter and list applications	5
	e) Explain level measurement using differential pressure technique	5
2)	a) Explain in detail different types of errors in measurement system	10
	b) Explain FET type electronic voltmeter with neat circuit diagram.	10
3)	Discuss static and dynamic characteristics of instruments with importance of each parameter under consideration.	10
	b) Explain in detail Dead Weight Testing with neat labelled diagram	10
4)	a) Explain LVDT with neat labeled diagram.	10
	b) Draw and explain Kelvin's Double Bridge for unknown resistance measurement	10
5)	a) Explain single channel and multichannel data acquisition system with neat labeled separate block diagrams.	10
	b) Draw block diagram of CRO. and DSO. List important features a applications of DSO	nd 10
6)	Short note on (any four)	20
	a) Selection criteria of transducers	
	b) Strain Gauges c) Turbine flow meter	
	d) Thermocouples	
	e) Megohm bridge for high resistance measurement	