sem-III - choice based | ETRX | Applied Maths II

May-2013

Q.P. Code: 25013

(3 Hours)

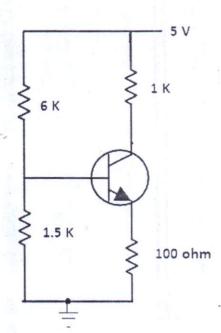
Total Marks:80

Note: 1) Question No.1 is compulsory 2) Attempt any Three from the remaining

Q1		
A)	Find Laplace transform of $\sin \sqrt{t}$	5
B)	Prove that $u = -r^3 \sin 3\theta$ is harmonic function also find harmonic conjugate function	5
C)	of u $\pi - x_{>2}$	Г
C	Find a fourier series to represent $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in (0, 2π) hence deduce that	5
	$\frac{\pi^2}{6} = \frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$	
D)	Find the acute angle between the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at $(2,-1,2)$	5
Q2	, , , , , , , , , , , , , , , , , , , ,	9
A)		6
	Prove that $J_{(-3/2)}(x) = -\sqrt{\frac{2}{\pi x}} \cdot (\frac{\cos x}{x} + \sin x)$	
B)	Find the Bilinear transformation which maps the points $z = 1$, i, -1 onto the points	6
C)	w = 0, 1, ∞ Obtain the fourier series for $f(x) = x $ in $(-\pi, \pi)$	0
C)	Obtain the fourier series for $f(x) = x \ln (-\pi, \pi)$	8
	π^2 1 1 1	
	Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1} + \frac{1}{9} + \frac{1}{25} + \dots$	
Q3		
A)	Find inverse laplace transform of (i) $2\tanh^{-1}(s)$ (ii) e^{-4s} . $\frac{s}{(s+4)^3}$	6
	(\$+4)3	
B)	Find the image of the rectangular region bounded by $x=0$, $x=3$, $y=0$, $y=2$ under the	6
	bilinear transformation $w = z + (1+i)$	-200
C)	Prove that $y = \sqrt{x} . J_n(x)$ is a solution of the equation,	8
	$x^2 \frac{d^2 y}{dx^2} + (x^2 - n^2 + \frac{1}{4})y = 0$	
	dx^2	
Q4		
A)	Find Complex form of Fourier Series of coshax in (-a, a)	c
B)		6 6
	Use Gauss's Divergence theorem to evaluate $\iint_S \overline{N} \cdot \overline{F} ds$ where $\overline{F} = 4xi + 3yj - 2zk$	O
(1)	and S is the surface bounded by $x=0$, $y=0$, $z=0$ and $2x + 2y + z=4$	
C)	Solve using Laplace transform($D^2 + 2D + 1$)y = 3te ^{-t} ,given y(0)=4 and y'(0)=2	8
Q5		
Α	Find half range cosine series for f(x)= $\begin{cases} x, & 0 < x < (\frac{\pi}{2}) \\ \pi - x, & (\frac{\pi}{2}) < x < \pi \end{cases}$	6
	Find half range cosine series for $f(x) = 1$	
B)		_
0)	Find inverse Laplace transform of $\frac{1}{(s^2+4s+13)^2}$ using convolution theorem	6
c)	Prove that $\overline{F} = (y^2 \cos x + z^3)i + (2y \sin x - 4)j + (3xz^2 + 2)k$ is a conservative field .Find	8
	(i) Scalar Potential for \overline{F} (ii) The work done in moving an object in this field from	
	$(0,1,-1)$ to $(\frac{\pi}{2},-1,2)$.	
	2, 2, 2, 2,	

Q.P. Code: 25013

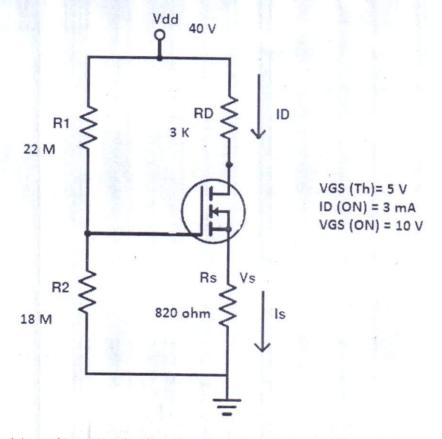
Q6		
A)	Find the Laplace Transform of $e^{-4t} \int_0^t u \sin 3u du$	6
B)	Use stoke's theorem to evaluate $\int_C \bar{F} \cdot d\bar{r}$ where $\bar{F} = (2x-y)i-yz^2j-y^2zk$ and S is the surface of hemisphere $x^2+y^2+z^2=a^2$ lying above the XY- plane	6
C)	Express the function $f(x) = \begin{cases} 1 & , & x < 1 \\ 0 & , & x > 1 \end{cases}$ as Fourier integral .Hence evaluate $\int_0^\infty \frac{sinw.sinwx}{w} dw$	8


(3 Hours)

Maximum Marks 80

N.B: (1) Question No.1 is compulsory.

- (2) Solve any three out of remaining question.
- (3) Assume suitable data if necessary.


Que-1	Solve any Four	Marks
а	What happens when pn junction diode is made forward bias, explain considering any suitable application.	5
b	Explain how CC configuration of BJT gives voltage gain less than 1	5
С	Explain with the help of construction that MOSFET gives more input resistance than JFET	5
d	What is varactor Diode, also state its applications.	5
е	Compare C, L and LC filters.	5
Que-2a	Draw Energy band diagram of pn junction diode under i) Zero Bias ii) Forward bias and iii) Reverse Bias	10
Que-2b	For the given circuit find Steady State DC Parameters Icq and Vceq Given $\beta = 100$ and VBE = 0.7 V, also state in which region the circuit is working.	10

Q.P. Code: 36426

Que-3a For the given MOSFET amplifier , Determine IDq, VGSq and VDS.

10

Explain working principle, characteristics and applications of Photodiode. Que-3b 10 Que-4a What is the need of Filters, Explain L filter circuit? 10 Que-4b For the voltage divider biased BJT amplifier without bypass capacitor circuit 10 derive equation of Input resistance, Voltage gain, current gain and output resistance. Que-5a Design Single Stage CE amplifier for the given specifications 15 $Av \ge 100$, S = 10, Vo = 3 V, fL = 20 HZ, use transistor BC 147 B Use coupling and bypass capacitor as C1 = C2 = 10 μ F and CE = 100 μ F. Que-5b What is Clamping circuit, explain with neat Input and output waveforms for 05 negative Clamping circuit. Que-6a For the voltage divider biased E MOSFET circuit derive equation of Input 10 Resistance, Voltage gain and output resistance. Que-6b Derive equation of Input resistance, Current gain and Voltage gain for CC 10 amplifier.

Page 2 of 3

Ì				•
1	Ç	3	Ċ	1
1		2	ć	3
1		1		4
1	Ç	J		2
				4
1				
	•	4		
1				;
j	ļ		S	1
Ì	í		C	
1	¢			١

	Pdmax	lemax 0 2000	3	VCA	VCEO	A S	V CON	V 850	•	D.C.	. CHFFERI		gain	Small	Signal	N. N.	A P	W.J.		above
I ransision type	Watts	Watts Amps	d.c.	d.c.	volts d.c.	volts d.c.	d.c.	d.c.	, max	min	typ.		max.	min.	typ.	max.	1			MPC
ZN 3055	115.5	15.0		100	09	70	06	7	200	20			70	15	50					1.0
ECN 055	20-0	5.0	1.0	6.9	20	55	09	2	200	25		-	0	25	75					0.4
ECN 149	30-0	0.4	1.0	20	40	1	1	œ	150	30		50 11	0	33	09	115	5 1.2		4.0	0.3
ECN 100	5.0	0.7	9.0	10	09	65	1	9	200	20			0	20	06					0.00
BC147A	0.25	0.1	0.25	50	\$	20	1	9	125	115			220	125	220				1	1
2N S2S(PNP)	0.225	0.5	0.25	85	36	1	1	1	100	35			5	1	45	1	1		1	1
BC147B	0-25	0.1	0.25	20	45	30	1	9	125	200	290		00	240	330	200	0.9			1
Transistor type	hie	hoe	hre		Oja	0.36	11	SOLDIASTOLALIA INITIAL TOOL II GO	TAI CU	31/10	O LEGICA								w)	
BC 147A	2-7 K A	Ω 181	1.5 × 10+		04°C/mw	Bra	16-11	CI MOIS	JAL C.	יעערוד	THE STATE OF THE S						-	-		
2N S2S (PNP)	14 K D	25μ σ	3.2 × 10-4		1	-Ves volts	volts	0.0	0.5	0-4	0 9.0	0.8 1.0	1.2	1.6	2.0	2.4	2.5 3	3.0 3.5	4-0	
BC 147B	4.5 K D	30 108	2 × 10		0-4°C/mw	Tos ma	Tos max. mA	100	0.6	8.3	7.6 6	6.8 6.1	5.4	4.2	3.1	2.2	2.0.	1.1 0.5	0.0	
ECN 100	50 D	1	1	-	1			-	+	+	+	1	╀	+	00	00	_	00	0	
ECN 149	15.0	1	1	1		IDS IND. mA	A. W.	3./	0	*	4.0	4.0 3.3	7.7	-	ŝ	+	+	+	3	
ECN 055	12 A	l		1	1	fos min. mA	n. mA	4.0	4.0	2.2	1-6	1.0 0.5	0.0	0.0	0-0	0.0	0-0	0.0 0.0	0.0	
2N 3055	0 9	-																		
N-Channel JFET		2		100																
Type		Vois max.	Voc max.		Vos max.	P, max.	T	T, max.	loss	1)	fan (typical)		-V, Volus	olts		. da	Derate		0°2	
2N3872		20	20		50	300 mW	-1	175°C	2 mA		3000 μ σ	D	9		50 KΩ		2 mW/C		0-59°C/mW	Wm.
BFW 11 (typical)		30	30		30	300 mW	2	200℃	7 mA		S600 µ ₹	2	2-5		50 KD			0	0.59° C/mW	Wm

		(3 Hours)	80 Ma	rks
N.B.:	(1)	Question No. 1 is compulsory.		
	(2)	Solve any three questions from the remaining five		
¥	(3)	Figures to the right indicate full marks		
	(4)	Assume suitable data if necessary and mention the same in answer	sheet.	
Q.1	POS for b) Coop Per i) ii) Comm	$F(A,B,C) = \sum m(0,3,5,7)$ with its truth table and express F in SOP and form some ampare TTL and CMOS Logic families reform the following operation using 2's compliment $(7)_{10} - (15)_{10}$ $(50)_{10} - (2A)_{16}$ ment on results of (i) and (ii) impare SRAM with DRAM	id [2	20]
Q.2		plement following Boolean function using 8:1 multiplexer	[]	10]
		$A(A,B,C,D) = \overline{A} B \overline{D} + A C D + \overline{B} C D + \overline{A} \overline{C} D$ sign 3 bit Binary to Gray code Converter	[1	10]
Q.3	one ty	hat are shift registers? How are they classified? Explain working of pe of shift register.		10]
	b).Wri	ite VHDL code for 3 bit up counter.	[]	10]
Q.4	b). Co c) Mir	plain Master slave JK Flip flop nvert T flip flop to D flip flop. nimize the following expression using Quine McClusky Technique $(A, B, C, D) = \sum m(1,3,7,9,10,11,13,15)$	[5	5] 5] 10]
Q.5	b) b) c) Exp	tte and prove Demorgan's theorem Convert (532.125) ₈ into decimal, binary and hexadecimal, plain Full Adder circuit using PLA having three inputs, 8 product te vo outputs.	[5	5] 5] 10]
Q.6	a) Pro	ve that NAND and NOR gates are universal gates	[10]
	b) Dra	aw and explain 3 bit asynchronous binary counter using positive	edge [10]

triggered JK flip flop. Draw the waveforms.

(3 Hours)

[Total Marks: 80]

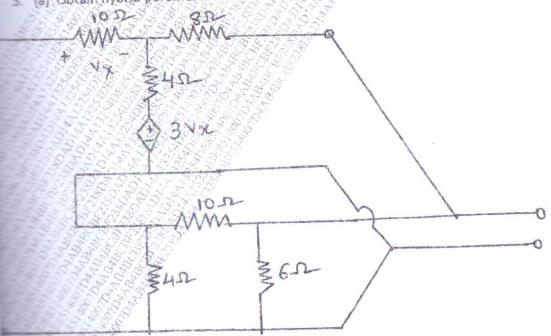
(20)

K.B. (1) Question No.1 is compulsory.

- (2) Attempt any three questions from remaining questions.
- (3) Assume suitable data if required.
- (4)Attempt every question in a group and not randomly
- 1. (a) Check for Hurwitz polynomial

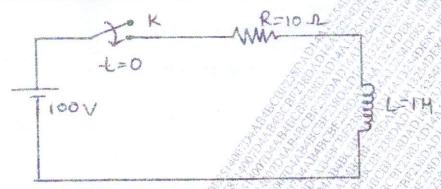
$$Q(S) = S^5 + S^3 + S^1$$

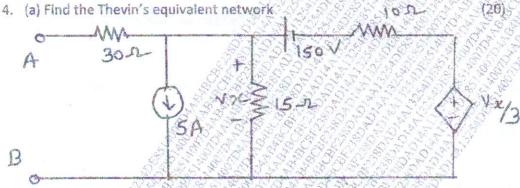
$$Q(S) = S^4 + 6S^3 + 8S^2 + 10$$


- (b) Obtain s-domain (Laplace Transform) equivalent circuit diagram of an inductor and capacitor with initial conditions.
- (c) What are conditions for rational function F(S) with real coefficient to be p.r.f?
- (d) Explain Y-parameter in terms of Z-parameter.
- 2. (a) Realise the following function in Foster-I and Foster-II forms. (20

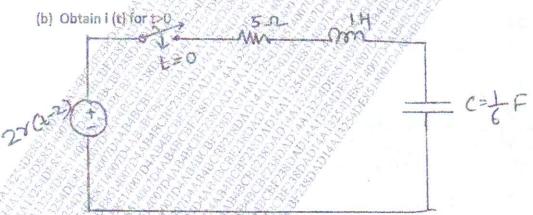
$$Z(S) = 3(S+2)(S+4)$$

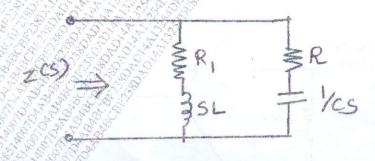
 $S(S+3)$

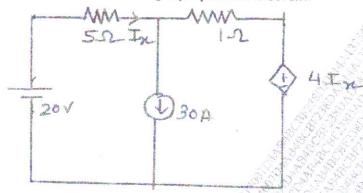

(b) Realise the following function in Cauer - Land Cauer-il forms.


$$Z(S) = (S+1)(S+3)$$

 $S^2 + 2S$

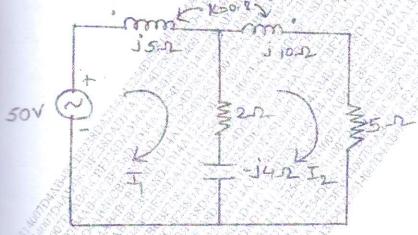

3. (a) Obtain hybrid parameter of the inter connected network. (20)


(b) The switch is closed at t=0, find values of I, dI, d2 at t=0+. Assume all initial current of inductor to be zero for circuit



5. (a) The poles and zeros of the network shown below are as follows: Poles at -1+1/5, -1-1/5, zeros at -1,-3 and the scale factor is K. If Z(0) = 1. Find the values of R, R, L and C.

(20)


(b) Find the current ix using superposition theorem.

5. (a) Check whether the following functions are prf or not:-

$$F(S) = \frac{2S^4 + 7S^3 + 11S^2 + 12S + 4}{S^4 + 5S^3 + 9S^2 + 11S + 6}$$

(b) Find Voltage across 5Ω resistor using mesh Analysis.

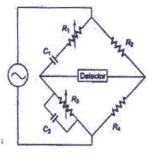
E/SEMTIT (Choice Base) / ETRX / MAY 2018 Q. P. Code: 34585 Electronic Instruments & Measurements

[Time: Three Hours]

[Marks:80]

Please check whether you have got the right question paper.

N.B:


- (i) Question No. 1 is compulsory & attempt any three out of the remaining five questions.
- (ii) Assume suitable data if required but justify it logically wherever applicable. Figures to the right indicate full marks & every sub-question from Q.2 to Q.6 have equal weightage And have 10 marks each.

Attempt any four

20

- (a) Define the following static characteristics of instruments.
 - (i) Sensitivity
 - (ii) Precision
 - (iii)Dead zone
 - (iv)Drift.
 - (v) Accuracy
- (b) Draw a neat circuit diagram of LCR Q meter & explain its operating principle.
- (c) Compare dual slope and dual beam CRO.
- (d) Describe operating principle of harmonic distortion analyzer with a neat block diagram.
- (e) With a neat diagram, explain the principle of digital time measurement.
- (f) Compare sensor and transducer.
- (a) Voltmeter having a sensitivity of 1000 ohm/volts read 100V on its 150 V scale when connected across an unknown resistor in series with a millimeter, when millimeter reads 5m A
- 20

- (i) Calculate apparent resistance of unknown resistor.
- (ii) Calculate actual resistance of unknown resistor.
- (iii)Calculate error due to loading effect of voltmeter.
- (b) Wien Bridge is one of the AC bridges as shown in the Fig. 1 below. Derive conditions under which the bridge becomes balanced. Which quantity / parameter is it used to measure?

- Draw the block diagram of dual trace CRO and explain its operation.
- (b) Explain how Lissajous patterns / figures are used for measurement of an unknown frequency & phase shift using a cathode ray oscilloscope (CRO).
- 20
- 2 Draw the circuit diagram and explain the operation of bridge used to measure capacitance.
- Explain various features of digital storage oscilloscope.

Q. P. Code: 34585

Q.5 (a) Draw the neat diagram and explain the operation of successive approximation type DVM.

- (b) In a food processing unit, a highly acidic solution is stored in a storage tank where its level has to be continuously monitored round the clock. Your supervisor suggests that due to highly acidic nature of the solution, a non-contact transducer should be used for the level measurement? Which transducer will you use for above application? Describe its operation with a neat diagram.
- Q.6 (a) Draw the diagram and explain the operation of Rotameter.

(b) Explain the operation of Pirani gauge for pressure measurement?
