(3 Hours)

[Total Marks: 80

5

5

5

N.B.: (1) Question No. one is compulsory.

- (2) Answer any three questions from Q.2 to Q.6
- (3) Use of stastical Tables permitted.
- (4) Figures to the right indicate full marks
- 1. (a) Find the Eigen values of $A^2 + 2I$, where $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -2 & 0 \\ 3 & 5 & 3 \end{bmatrix}$ and I is the Identity matrix of order 3.

(b) Evaluate the line integral $\int_0^{1+i} (x^2 + iy) dz$ along the path y = x

(c) If x is a continuous random variable with the probability density function given by

$$f(x) = \begin{cases} k(x - x^3) & 0 \le x \le 1\\ 0 & otherwise \end{cases}$$

Find i) k ii) the mean of the distribution.

(d) Compute Spearman's rank correlation coefficient from the following data

X	18	20	34	52	12
Y	39	23	35	18	46

2. (a) Is the following matrix Derogatory? Justify.

$$\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$

(b) Evaluate $\oint_C \frac{e^{2z}}{(z-1)^4} dz$ where c is the circle |z| = 2

(c) The marks of 1000 students in an Examination are found to be normally distributed with mean 70 and standard deviation 5, estimate the number of students whose marks will be i) between 60 and 75 ii) more than 75.

Turn over

3. (a) Solve the following non-linear programming problem using Kuhn-Tucker conditions

Maximize
$$z = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$$

Subject to $2x_1 + x_2 \le 5$; and $x_1, x_2 \ge 0$

(b) Fit a Binomial distribution to the following data

x	0	1	2	3	4	5	6
F	5	18	28	12	7	6	4

(c) Is the following matrix diagonalizable? If yes, find the transforming matrix and the diagonal matrix.

$$\begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

4. (a) Solve the following LPP using Simplex method

Maximize
$$z = 4x_1 + x_2 + 3x_3 + 5x_4$$

Subject to $-4x_1 + 6x_2 + 5x_3 + 4x_4 \le 20$
 $-3x_1 - 2x_2 + 4x_3 + x_4 \le 10$
 $-8x_1 - 3x_2 + 3x_3 + 2x_4 \le 20$
 $x_1, x_2, x_3, x_4 \ge 0$

(b) If a random variable X follows the Poisson distribution such that

$$P(X = 1) = 2P(X = 2)$$
, find the mean, the variance of the distribution and $P(X = 3)$

(c) Expand $f(z) = \frac{1}{z(z-2)(z+1)}$ in the regions

i)
$$|z| < 1$$
, ii) $1 < |z| < 2$, iii) $|z| > 2$

[Turn over

6

(3 Hours)

Total Marks: 80

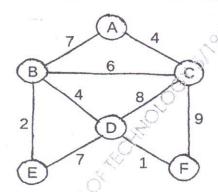
[10]

N.B.:	(1)	Question No.	1	is	compulsory.
-------	-----	--------------	---	----	-------------

(2) Attempt any three questions out of remaining five questions.

- Q1. a) Explain the asymptotic notatinos.
 b) Write an algorithm to find minimum and maximum value using divide and conquer and also derive its complexity.
- Q2, a) Explain the concept of multiplying long integers using divide and conquer.

 [10]


b) Sort the following numbers using Quick Sort. Also derive the time complexity of Quick Sort.

50, 31, 71, 38, 77, 81, 12, 33

Q3. a) Solve the following Job sequencing with deadlines problem n=7, Profits(p1, p2,....,p7) = {3, 5, 20, 18, 1, 6, 30}

Deadlines(d1,d2,...,d7) = $\{1, 3, 4, 3, 2, 1,2\}$ b) Explain different string matching algorithms. [10]

Q4. a) Find the Minimum Spanning Tree of the following graph using kruskal's algorithm [10]

- b) Explain flow shop scheduling with example. [10]
- Q5. a) Write an algorithm for sum of subsets. Solve the following problem.

 M=30 W={5, 10, 12, 13, 15, 18}

 b) Find the shortest path from source vertex A using Dijkstra's algorithm [10]

B 2 E 2 F 2 D

- Q6. Write note on (any two): [20]
 - a) Strassen's matrix multiplication.b) 8-Queen problem.
 - c) Graph coloring
 - d) 15-puzzle problem.

____X ____

Et cemix CBSGS CMPN- Comprite Organisation & Axelitecture.

Q.P. Code: 541501

		(3 Hours) [Total M	larks: 80
N.	В. :	 Q. 1 is compulsory. Attempt any THREE out of the remaining questions. Assume suitable data if necessary. 	STEPHEN
1.	Atte	empt any 4 sub questions.	9
		a) Explain various pipeline hazards.	5
	((b) Express (35.25) ₁₀ in the IEEE single precision standard of floating prepresentation.	point 5
	((c) Explain in brief the function of 8089 I/O processor.	5
	((d) Compare RISC and CISC processors.	5
	((e) Differentiate between Computer Architecture and Computer organiza	ition. 5
2.	(a)	Explain Flynn's classification in detail.	10
	(b)	Explain the Interleaved memory.	10
3.	(a)	Calculate number of page faults and page hits for the page replacement por FIFO, Optimal & LRU for given reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 2, 1, 2, 0, 1, 7, 0, 1 (assuming three frame size).	licies 10 3, 0,
	(b)	What is the need of DMA? Explain its various techniques of data transf	fer. 10
1	(a)	What is Bus arbitration? Explain its techniques.	10
4.	(b)	Describe the register organization within the CPU.	10
	(0)	Describe the register organization within the	
. 5	(2)	What are the features of cache memory design?	10
5.	(b)	Multiply (-10) and (-4) using Booth's algorithm.	10
	(0)	Triumping (10) and () depend - 10	.—
6	Wri	ite notes on	
0.	1171	(a) Joysticks	6
		(b) The characteristics of memory	8
		CONTROL DISTRICT MOVIEDIA DO	_

Q.P. Code: 541600

(3 Hours)

Total Marks: 80

N.B.:	(1) Question No.1 is compulsory.(2) Solve any three questions out of the remaining questions.(3) Make suitable assumptions if needed.	
1.	(a) Explain BCNF with example.(b) Write short note on Deadlocks.(c) Explain Total and Partial Participation.(d) Discuss the role of Database Administrator.	5 5 5 5
2.	 (a) Discuss steps in query processing. Also describe cost based query optimization. (b) Draw an ER Diagram and convert it into relational model for a Company, which has several Employees working on different types of Projects. Several Employees are working for one Department, every Department has a Manager. Several Employees are supervised by one Employee. 	10 10
3.	(a) Explain types of integrity constraints with example.(b) Discuss Data Definition and Manipulation Commands in SQL.	10 10
4.	(a) Describe the overall architecture of DBMS with suitable diagram.(b) Explain Security and Authorization in DBMS.	10 10
5.	(a) Explain the following Relational Algebra Operations with example: i. Natural Join ii. Generalized Projection ii. Set Intersection iv. Division Operator	10
	(b) Explain Assertions and Triggers in detail.	10
6.	Write Short notes on: (a) ACID properties (b) Shadow Paging (c) Specialization and Generalization (d) Aggregate Functions in SQL	20

				(3 Hours)		[Total Marks	:80
N.B	(2) (3) (4) (5)	Attempt a Assumpti Figure to	No. 1 is computance three questions made should the right indicate the control of the right indicate the right who is the right who is the right indicate the right i	ons out of remains be clearly state ate full marks.		5.	A PARTY OF THE PAR
1.	(a) E (b) D (c) S	Explain post Differentiate Show that lar	correspondence potential between NFA and	problem. d DFA. is prime numbe	er} is not regular	AND SOLD THE	5 5 5 5
2.	(a) I	Design the D		he binary string	s over $\Sigma = \{0,1\}$ t		
					b)* N _a (x) N _b (x r than number of t		10
3.			tions and equival				10 10
4.			y machine to find following NFA to		ement of a binary n	umber.	10 10
		State $\rightarrow q_0$	$\begin{array}{c} a \\ \{q_0, q_1\} \end{array}$	√ {q₁}	€ { }		
		*q ₁	$\{q_2\}$ $\{q_0\}$		{ } {q ₁ }		
5.		and producti		nar G≠ (V, T, F	$(S,S), V = \{S, X\}, T$	$= \{a,b\}$	1.0
		S→aSb aX X→ Xa Sa Convertithis) a grammar in Gre	ibach Normal F	orm (GNF).		S.C.
	(b)	State and pro	ove Rice's theore	em.			10
6.	1 The	${a^nb^m \mid n, m}$	ning machine as ≥ 0 and $m \geq n$ }				10
L.	(b)	Design PDA	to check even p	arentheses over	$\Sigma = \{0,1\}$	•	10

SE/CMPN/SEM-TV(CBSGS)/computer Graphics/MAY-16

Q. P. Code: 541801

[80 Marks] (3 hours) N.B.: 1. Question No.1 is compulsory. 2. Attempt any Three questions out of remaining Five questions. 3. Figures to the right indicate full marks. 4. Assume any suitable data wherever required but justify the same. Prove that two successive rotations are additive. Q.1 a) Explain the various applications of computer graphics b) Explain dithering technique in detail. c) Specify the disadvantage of DDA algorithm d) Explain the steps used in rotation of 2 D object about an arbitrary axis Q.2 a) and hence derive the matrix for the same. Compare flood fill and boundary fill algorithm illustrating the same with b) a diagram Explain any one polygon clipping algorithm in detail. 10 Q.3 a) Explain midpoint circle algorithm. Explain the same to plot a circle 10 b) whose radius is 10 units 10 Q.4 a) Explain Cohen Sutherland line clipping algorithm in detail Explain what is meant by Bezier curve. Also explain the properties of b) 10 What is meant by parallel and perspective projections? Derive matrix for 10 Q.5 a) perspective projections Define window, viewport and hence explain how window to viewport 10 b) transformation is performed Write short notes on (any two) Q6 20 a) Gouraud and Phong shading technique b) Shearing and viewing transformation c) Sweep representation