S.E-SEMW (17) (C13595) Applied Mathematics IV

Time Duration: 3Hr

Q. P. Code: 37068

May 2018.

Total Marks: 80

		tion no.1 is co					
			questions from				Maximum
			bles permitted. indicate full n				Marks
Q1. a)				If of unit circle	z = 1 from $ z = 1$	-i to z= i.	[5]
b)	If $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$,	then find the	eigen values o	$f 4A^{-1} + 3A +$	2 <i>I</i> .		[5]
e)	If the tangent	of the angle r	nade by the lin	ne of regression t between x and	of y on x is 0.6	and	[5]
d)			llowing L.P.P.				[5]
	Minimise z = Subject to	$= x_2 + 3x_3$ $2x_1 + x_2$	2 ≤ 3				
	x_1	$+2x_2 + 6x_3$ $-x_1 + x_2 + 2x$	≥ 5				
		$x_1 x_2 x_3 \geq$	0				
Q2. a)	Evaluate \int_C	$\frac{e^{2z}}{(z+1)^4} dz$, wh	nere c is the cir	cle $ z - 1 = 3$.			[6]
b)	Show that the	matrix $A = $	$\left[egin{array}{ccccc} 7 & 4 & - \ 4 & 7 & - \ -4 & -4 & 4 \end{array} ight.$	1 1 is derogatory			[6]
c)	For a normal variate with mean 2.5 and standard deviation 3.5, find the probability that (i) $2 \le X \le 4.5$, (ii) $-1.5 \le X \le 5.3$.					[8]	
Q3. a)				er is a random	variable X wi	th probability	[6]
			$= \begin{cases} kxe^{-\frac{x}{3}}, x \\ 0, x \end{cases}$				13
	Find the value	e of k, the ex	pectation of k	and the probab	ility that on a	given day the	
	274		e than expecte				
b)	Solve the follo	owing L.P.P. l	y simplex me	thod			[6]
	Maximise z						
	Subject to 22	A Company of the Comp	\$ 29 30 C C				
		$x_1 + 5x_2 \le 20$ $x_1 + 3x_2 \le 18$					
	A YMY WY	$x_1 + 3x_2 \le 10$ $x_2 \ge 0$					
c)	Expand $f(z)$	$=\frac{2}{(z-1)(z-2)}$	in the regions ((i) $ z < 1$ (ii) 1	< z < 2(iii)	z > 2.	[8]
(V4. a)		f suffering fro	om it. What is	in an industry is the probability to the disease?			[6]
b)				ween X and Y f	rom the followi	ng data.	[6]
	X	3	5	4	6	2	
	Y	3 8	4	5	2	6	
c)	Show that the	matrix A =	1	1	able. Find the	transforming	[8]
	matrix M and	the diagonal f		×20			

[6]

[6]

[8]

[6]

[6]

[8]

- Q5.a) Can it be concluded that the average life-span of an Indian is more than 70 years, if a random sample of 100 Indians has an average life span of 71.8 years with standard
 - **b)** Evaluate $\int_0^{2\pi} \frac{d\theta}{3+2\cos\theta}$, using Cauchy's residue theorem.
 - Using the Kuhn Tucker conditions, solve the following N.L.P.P.

Using the Real
Maximise
$$z = x_1^2 + x_2^2$$

Subject to $x_1 + x_2 - 4 \le 0$
 $2x_1 + x_2 - 5 \le 0$
 $x_1, x_2 \ge 0$

A die was thrown 132 times and the following frequencies were observed. Q6.a)

	. a a times i	and the fo	llowing	requencie	Total
A die was throw	1 2	3	4	5	9 6 6 6
No obtained	-	25	15	29 28	132
Frequency	15 20		biased.	ve the foll	owing results

Test the hypothesis that the die is unbiased. Two independent samples of sizes 8 and 7 gave the following results.

Frequency of heavis that the die is unbladed the following results.
Test the hypothesis of sizes 8 and 7 gave 18 16
Test the hypothesis that the die is unionated. Test the hypothesis that the die is unionated. Test the die is
10 11
Sample 1 19 13 19 13
Sample 2 15 15 comple means significant?
Summer means of D. D.

Is the difference between sample means significant?

b) Using Penalty (Big-M) method solve the following L.P.P.

Using Penalty (Dig 10)

Maximise
$$z = 3x_1 - x_2$$

Subject to $2x_1 + x_2 \le 2$
 $x_1 + 3x_2 \ge 3$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$

ALL THE BEST!

Q. P. Code: 22606

Time: 3 Hours

Marks: 80

N.B

- (1) Question no. 1 is compulsory.
- (2) Attempt any 3 from the remaining questions.
- (3) Assume suitable data if necessary.
- (4) Figures to right indicate full marks.
- problem Consider the instance of knapsack where n=6. M=15. 08 0.1 Profits (P1,P2,P3,P4,P5,P6)=(1,2,4,4,7,2)and weights are (W1,W2,W3,W4,W5,W6) = (10,5,4,2,7,3). Find Max Profit using Fractional Knapsack.

b. Compute worst case complexity of following program segment

02

sum = 0;

- c. Write Quicksort algorithm using Divide and Conquer approach. Derive its complexity 10 for all the three cases.
- a. Explain Divide and Conquer approach. Write a recursive algorithm to determine the 20 max and min from given elements and explain.
 Derive the time complexity of this algorithm and compare it with a simple brute force algorithm for finding max and min.
 For the following list of elements trace the recursive algorithm for finding max and min and determine how many comparisons have been made.
 22,12,-5,-8,15,60,17,31,47
- a. What is optimal binary search tree? Let n = 3 and {a1,a2,a3} ={do,if,while}. Let p(1:3) = {0.5,0.1,0.05} and q(0:3) = {0.15,0.1,0.05,0.05}. Compute and construct OBST for above value using Dynamic Programming.
 - b. Solve 8 puzzle problem by Branch and Bound. Draw State space tree.

08

20

1	2	3	
5	6		
7	8	4	
Init	ial s	tate	2

 5
 8
 6

 7
 4

Final State

Write and Explain the algorithm to compute all pair source shortest path using dynamic programming and prove that it is optimal.

For the following graph determine the all pairs source shortest path

Page 2 of 2

Q. P. Code: 22606

08

- Q.5 a. Write an algorithm to determine the sum of subsets for a given Sum and a Set of 15 numbers. Draw the tree representation to solve the subset sum problem given the numbers set as {3,5,6,7,2} with sum = 15. Derive all the subsets. Comment on the complexity of the algorithm.
- Q.5 b. An algorithm takes 0.5ms for input size 100. How long will it take for an input size 500. 05 If the running time is following
 - 1) Linear 2) Quadratic 3) Cubic 4) √n 5) nlog₂n
- Q.6 A Explain the idea behind backtracking? Write an algorithm for N-queen problem. Draw 1 state space tree for 4-queen problem.
 - b What is LCS? Find LCS for string S = "ABAZDC" and T= "BACBAD"

Q. P. Code: 32479

10

10

Time: 3 hours Marks: 80 N.B.: (1) Question Number 1 is compulsory (2) Solve any three Questions from the remaining. (3) Make suitable assumptions if needed 1. Construct an E-R diagram for a Library Management System. Convert the E-R 10 Diagram to Tables. (b) Explain Authorization in SQL. 5 List four significant differences between file processing system and database 5 management system Explain Types of Integrity Constraints with example. 10 Write SQL queries for the given database (b) 10 Employee(eid,emp-name,street,city) Works(eid,cid,salary) Company(cid,comp-name, city) Manager (eid, manager-name) Find the names of all the employees having 'S' as first letter in their Names (ii) Display the annual salary of all the employees. Find the name, street and city of all employees who work for "Accenture" and earn more than 30,000. (iv) Give total number of employees

12

08

Page 1 of 2

(a) What is an attribute? Explain different types of attributes with examples.

(b) What is Normalization? Explain 1NF, 2NF, 3NF and BCNF.

4. (a)		Explain following terms with examples			
		(i) Weak Entity Set			
		(ii) Data Independence			
		(iii) Extended ER features			
		(iv) Total and Partial participation			
	(b)	Explain any five Relational Algebra Operators in detail.	10		
5	(a)	What is Transaction? Discuss the ACID properties of Transaction.	10		
	(b)	Describe the Overall architecture of DBMS with suitable Diagram.	10		
6	(a)	Explain log based recovery.	10		
	(b)	Write a note on	10		
		1) Armstrong axioms			
		2) Thomas write rule			

S.E. SEMIV (CMPH) (C188GS) Per. 2012 Theoretical Comps. Science Q. P. Code: 37715

Duration: 3 hours

Total marks: 80

N.	B.:	(1)	Question No. 1 is Compulsory						
(2)		(2)	Attempt any three questions out of remaining five questions						
	(3)		Assume suitable data wherever required but justify that						
(4) A		(4)	Assumptions should be clearly stated.						
1	а	Differer	ntiate between DFA and NFA.	[5]					
	b	Show th	nat L= {(0 ⁿ 1 ⁿ n>0} is not regular using pumping lemma.	[5]					
	C		FA. List down the applications of FA.	[5]					
	d	Explain	Recursively Enumerable Language.	[5]					
2	а	a)	ct the NFA with \in -moves for the regular expression for the language which ends in either 01 or 101 over $\Sigma = \{0,1\}$ for the R.E $(a^*b^*+(ab)^*)$ over $\Sigma = \{a,b\}$	[10]					
	b	Constru	ct the DFA that accepts the language represented by 0*1*2*.	[10]					
3	а		[6] [A. C. A. C. A. C.	[10]					
	b		Mealy Machine for the language represented as (0+1)*(00+11)	[10]					
4	a	State an	d prove pumping lemma for context free languages.	[10]					
Carlo Carlo	b	Write Sh i) ii)	Post Correspondence problem Chomsky Heirarchy	[10]					
5	а	Design P	PDA that accepts the language L={anbman m,n>=1}	[10]					
	b	Design t	uring machine to accept languages over $\Sigma = \{0,1\}$ where $L = \{0^n 1^{n}, n \ge 0\}$	[10]					
6	а	P= { S→	parse tree for the string aabbaa for the CFG given by G where aAS a SbA SS ba	[10]					
	3.5		both leftmost and rightmost derivation.						
	b	Briefly E	xplain the types of Turing Machine.	[10]					