[Time: 3 Hours]

[Marks:80]

Please check whether you have got the right question paper.

N.B:

- 1. Question no1 is compulsory and solve any three questions from remaining.
- 2. Draw neat and labeled diagrams.
- 3. Assume suitable data if it is required.

Solve any five:

0.2

1) Draw the output waveform for following circuit. Identify the type.

20





- Explain any one biasing circuit used for E-MOSFET.
- 3) Explain effect of coupling and by pass capacitors on frequency response of CS amplifier.
- 4) State advantages of negative feedback.
- 5) Derive expression for efficiency of Class A Transformer coupled amplifier.
- 6) Compare CS amplifier with CE amplifier.
- a) For the given circuit find IB, VCE, Ica.

10



b) Explain working of CS amplifier using JFET and derive formula for voltage gain, Ri and Ro. (using self bias)

10

1

[P.T.O]

- a) Explain need for cascading amplifier stages. Explain working of CS-CE multistage amplifier and Derive expressions for A<sub>VT</sub>, Ri and Ro.
- Explain working of Wein Bridge oscillator with the help of circuit diagram and give equation
   of frequency of oscillations.
- a) For dual i/p balanced output diff amp derive expression for Ad and Ac. Suggest modification to improve CMRR.
- b) For the following circuit calculate Av, Ri and Ro.

0.3



I<sub>DSS</sub>=8mA, Vp=3V, Rd=50k

- a) Prove that efficiency of Class B transformer coupled power amplifier is 78.5%. Suggest schemes

  For removing cross over distortion.
- b) For the given circuit of CS amplifier find higher cut off frequency.



 $l_{sss}=8mA$ , Vp=-4V,  $r_d==\infty$ 

c=2pF, cgs=4pF, cds=0.5pF, cwi=5pF, cwo=6pF

(cwi & cwo are wiring capacitances at i/p and o/p respectively.)

10

20

## Write short notes on any four:

- 1) Comparison of CB, CE and CC amplifier
- 2) Current series negative feedback
- 3) Constant current source (in diff amp)
- 4) Cascode amplifier
- 5) Heat sink used in power amplifiers.

## [Time: 3 Hours]

[ Marks: 80]

Please check whether you have got the right question paper.

N.B:

- 1. Question No. 1 is compulsory.
- 2. Attempt any three questions from remaining.
- 3. Assume suitable data if required.
- 4. Figure to the right indicate full marks.
- 1. Attempt any four from the following:

20

- a) Explain any five rules of root locus plot.
- b) What are the properties of state transition matrix.
- c) Explain adaptive control system.
- d) Describe the Mason's gain formula with an example.
- e) Explain need of compensators.
- a) Obtain the overall transfer function from block diagram.

10



b) Find the solution of following state equation.

10

$$\dot{x} = \begin{bmatrix} -5 & -6 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$

 Explain the type of signal which produces a finite steady state error for following system. Also find the steady state error. 10

i) 
$$G(s)H(s) = \frac{20}{(S+2)(S+3)}$$

ii) 
$$G(s)H(s) = \frac{20(S+1)}{S^2(S+2)(S+4)}$$

iii) 
$$G(s)H(s) = \frac{2.5(S^2 + 2S + 1)}{S(S+1)(S^2 + 5S + 2)}$$

b) Derive an Expression for output response of a second order under damped control system. Assume the input to be unit step signal.

10

Turn Over

4. a) Draw the root locus for the system with 
$$G(s)H(s) = \frac{K(S+2)(S+3)}{S(S+1)}$$
 and comment on stability.

b) Determine the stability of the system having characteristic equation 
$$S^5 + S^4 + 2S^3 + 3S + 5 = 0$$

5. a) Draw Bode plot and find gain margin and phase margin for 
$$G(s)H(s) = \frac{64(S+2)}{S(S+0.5)(S^2+3.2S+64)}$$

Discuss the stability of system using Nyquist plot for 
$$G(s)H(s) = \frac{20}{S(S+4)(S-2)}$$
.

6. Attempt any two

20

- a) Different composite controllers.
- b) Co-relation between time domain and frequency domain specification.
- c) Using Mason's gain formula, find the gain of the following system in figure below.



| Duration: 3 hrs. Total marks: 60                                                                                                                                                                                                                                                                     |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| N.B                                                                                                                                                                                                                                                                                                  |            |
| <ol> <li>Question 1 is compulsory</li> <li>Solve any THREE out of the remaining 5 questions</li> <li>Figures on the right indicate full marks</li> <li>Assume suitable data if necessary</li> </ol>                                                                                                  |            |
| Q1. Solve any THREE                                                                                                                                                                                                                                                                                  | (15)       |
| <ul> <li>a) A 6 pole, 50Hz Induction motor has a full load speed of 950 rpm. Calculate slip.</li> <li>b) Derive emf equation of a dc motor.</li> <li>c) State the important applications of brushless DC motor</li> <li>d) Explain v/f method of speed control of 3 phase induction motor</li> </ul> |            |
| Q2. a) Develop equivalent circuit of a 3-phase Induction motor.                                                                                                                                                                                                                                      | (8)        |
| b) Explain the working of capacitor start Induction motor.                                                                                                                                                                                                                                           | (7)        |
| Q3. a) Describe the construction and working principle of a variable reluctance motor.                                                                                                                                                                                                               | (8)        |
| b) With neat diagram, discuss the working of a3 point starter in a dc motor.                                                                                                                                                                                                                         | (7)        |
| <ul> <li>Q4. a) Name different types of unipolar brushless DC motor&amp; describe any one type in detail</li> <li>b) What are the advantages, disadvantages &amp; applications of Switched reluctance motors?</li> </ul>                                                                             | (8)<br>(7) |
| Q5. a) Compare 3 phase induction motor with 3 phase synchronous motor.                                                                                                                                                                                                                               | (7)        |
| b) Describe torque-slip characteristics of a three phase induction motor in 4 modes                                                                                                                                                                                                                  | (8)        |
| Q6. Write short notes on                                                                                                                                                                                                                                                                             | (15)       |
| <ul> <li>a) Auto-transformer Starting of 3 phase induction motor</li> <li>b) Permanent magnet synchronous motor</li> <li>c) Double field revolving theory</li> </ul>                                                                                                                                 |            |

## Fundamentals of Communication Engineering Q.P. Code:26508

[Time: 3 Hours]

[ Marks:80]

| Please check whether you ha | ave got the right of | question paper |
|-----------------------------|----------------------|----------------|
|-----------------------------|----------------------|----------------|

- N.B: 1) Question 1 is compulsory and Solve any three from the remaining five questions
  - 2) Assume suitable data if necessary.
  - 3) Figures to the right indicate full marks.

| Q.1 |    | Answer any four questions from the following:                                                                                                                                       | 20 |
|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | a) | Explain the advantages and disadvantages of TRF receiver.                                                                                                                           |    |
|     | b) | What is multiplexing? Compare TDM with FDM.                                                                                                                                         |    |
|     | c) | Discuss the need for modulation in wireless communication system.                                                                                                                   |    |
|     | d) | What is AGC? Why is AGC needed in super heterodyne receivers?                                                                                                                       |    |
|     | e) | Compare AM and FM.                                                                                                                                                                  |    |
|     |    | 나는 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그                                                                                                                                            |    |
| Q.2 | a) | With a neat circuit diagram and waveforms, explain the working of envelope detector. What are its merits and demerits?                                                              | 04 |
|     | b) | A sinusoidal carrier has amplitude of 10v and frequency 30 KHz is amplitude                                                                                                         | 06 |
|     |    | modulated by a sinusoidal voltage of amplitude $3v$ and frequency $1$ KHz. Modulated voltage is developed across a $50~\Omega$ resistance. i) Write the equation for modulated wave |    |
|     |    | and draw the modulated wave indicating Vmax, Vmin ii) Determine modulation Index. And calculate total power in the modulated wave iv) Draw the spectrum of modulated wave.          |    |
|     | c) | Explain anyone type of SSB generation and detection with neat diagrams                                                                                                              | 10 |
|     |    |                                                                                                                                                                                     |    |
| Q.3 | a) | With the help of a neat circuit diagram, explain the working of Foster Seeley discriminator. What is its disadvantage?                                                              | 10 |
|     | b) | With a neat block diagram, discuss the working of Linear Delta modulation, its advantages and disadvantages.                                                                        | 10 |
| Q.4 | a) | With a neat block diagram, explain the function of each block of Super heterodyne AM receiver.                                                                                      | 10 |
|     | b) | State Sampling theorem. Explain the two sampling techniques. What is aliasing error? How is it overcome?                                                                            | 10 |
|     | 3  |                                                                                                                                                                                     |    |
| Q.5 | a) | Explain the terms with reference to Radio receivers: Selectivity, Sensitivity, Fidelity and Double spotting                                                                         | 10 |
|     | b) |                                                                                                                                                                                     | 10 |
| Q.6 |    | Write short notes on any four:                                                                                                                                                      |    |
|     |    | a) FM wave generation using Armstrong method b) ISB Transmission c) Pre emphasis and De emphasis circuits with waveforms                                                            |    |

\*\*\*\*\*\*\*