SEM T (CBSGS) Paper / Subject Code: 39302 / APPLIED MATHEMATICS - IV / MAY 2019

Duration: 3 Hours

Marks: 80

N.B: a) Question number 1 is compulsory

- b) Solve any three from the remaining.
- c) All the question carry equal marks
- a) Find the extremal of $\int_0^\pi \frac{1+y^2}{y'^2} dx$ subject to y(0) = 0, $y(\pi) = 0$. [5]
 - b) Using Cauchy's Schwartz Inequality, show that $(a\cos\theta + b\sin\theta)^2 \le a^2 + b^2$,
 - Where 'a' and 'b' are real.
 - c) Show that Eigen values of Hermitian matrix are real. [5]
 - d) Evaluate $\int (z^2 2\bar{z} + 1) dz$ over a closed circle $x^2 + y^2 = 2$. [5]
- a) Find the extremal $\int_{x_1}^{x_2} (y^2 y'^2 2y \cosh x) dx$ [6]
 - b) Find the Eigen values and Eigen Vectors of the matrix $A^2 + 3I$, where [6]

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

- c) Obtain all possible expansion of $f(z) = \frac{1}{z^2(z-1)(z+2)}$ about z=0 indicating
- region of convergence. [8]
- Verify Cayley Hamilton Theorem for $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ -2 & 0 & 1 \end{bmatrix}$ and find A^{-1} . [6]
 - b) b) Using Residue theorem evaluate $\int_{c}^{c} \frac{e^{z}}{z^{2} + \pi^{2}} dz$ where C is |z| = 4. [6]
 - c) Show that a closed curve 'C' of a given fixed length (perimeter) which encloses maximum area is a circle. [8]
- Find an orthonormal basis for the subspace of \mathbb{R}^3 by applying Gram-Schmidt process, where $u_1=(1,0,0), u_2=(3,7,-2), u_3=(0,4,1).$ [6]
 - Find A^{50} for the matrix $A = \begin{bmatrix} 4 & 3 \\ 7 & 8 \end{bmatrix}$ [6]

Page 1 of 2

Paper / Subject Code: 39302 / APPLIED MATHEMATICS - IV

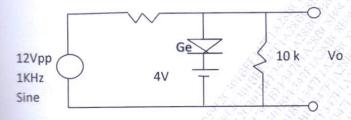
- c) Reduce the Quadratic Form xy+yz+zx to normal form by congruent transformation. [8]
- 5. a) Using Rayleigh-Ritz Method, find an approximate solution to the extremal problem $\int_0^1 (y^2 + 2yx {y'}^2) dx \,, \quad y(0) = 0, \ y(1) = 0. \tag{6}$
 - b) Determine whether the set $V=\{(x,y,z)\colon x=1,y=0\ or\ z=0\}$ is a subspace of \mathbb{R}^3
 - c) Show that the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is diogonable. Also find the transforming matrix and diagonal matrix.
- 6. a) Using Cauchy's Residue Theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{2 + \cos\theta}$ [6]
 - b) Evaluate $\int_{1-i}^{2+i} (2x+1+iy)dz$ along the straight line joining A(1,-1) and B(2,1)
 - c) Find the singular value decomposition of the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$ [8]

Q.P. Code: 10647

[Time: 3 Hours]

[Marks:80]

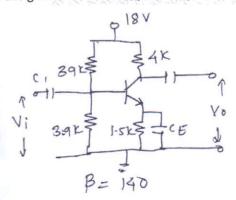
Please check whether you have got the right question paper.


N.B:

- 1. Question no1 is compulsory and solve any three questions from remaining.
- 2. Draw neat and labeled diagrams.
- 3. Assume suitable data if it is required.

Solve all:

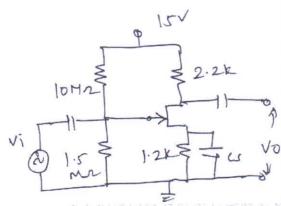
20


1) What is clipping circuit, for the given circuit draw output voltage waveform

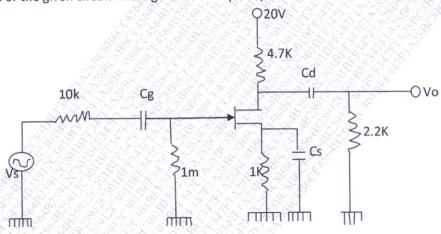
- 2) Explain voltage divider biasing circuit of E-MOSFET.
- 3) Explain how coupling and bypass capacitors affect low frequency response of the JFET Amplifier.
- 4) Give comparative chart of all -ve feedback amplifiers.
- 5) Explain any one method to improve CMRR of differential amplifier.
- a) For the given circuit find Icq and VCEQ.

10

10



- b) Derive equation of voltage gain, input resistance and output resistance of voltage divider biased D-MOFSET amplifier.
- a) What is the need of Multistage amplifier? Derive equation of overall voltage gain, input resistance 12 and output resistance of CS-CS amplifier.
- Draw neat diagram of RC phase shift oscillator and explain its working.


08

Q.P. Code:10647

a) For Dual input balanced output BJT differential amplifier, derive equation of I_{CQ} and V_{CEQ} . 10 b) Find Av, Zi and Zo for the given circuit. 10 $I_{DSS}=8mA,Vp=-3V,rd=50K\Omega$

- a) Prove that maximum efficiency of transformer coupled class A power amplifier is 50% and also
 Explain how impedance matching is done.
- b) For the given circuit find high cut off frequency.

 $C_G = 0.01 \mu F$, $C_C = 0.5 \mu F$, $C_S = 2 \mu F$

Rsig=10K Ω , RG=1M Ω , RD=4.7 Ω

RS=1KΩ, RL=2.2k

Q.4

 I_{DSS} =8mA, Vp=-4V, $rd=\infty\Omega$, VDD=20V

Cgd=2pF, Cgs=4pF, Cds=0.5pF, Cwi=5pF, Cwo=6pF

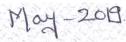
Where Cwi - input wiring capacitance

& Cwo – input wiring capacitance

Q.P. Code:10647

Q.6 Write short notes on any FOUR

- 1) Comparison of CB, CE & CC amplifier
- 2) Voltage series –ve feedback amplifier
- 3) Wilson current source
- 4) Darlington pair
- 5) Class AB Power amplifier


20

Q. P. Code: 36261

(10)

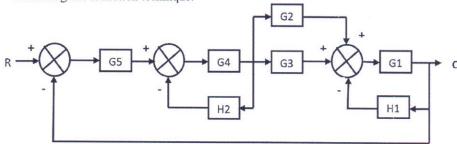
[Time: 3hou	ırs] [M	lax Marks 80]	
 Question no. 1 is compute Solve any three from the Assume suitable addition 	remaining five question	ons.	
Q1) Answer the following quest List the differences between D) Explain the feature of pipelir Explain the significance of /T (/ indicates bar).	8086 and 8088 proces	ssor. 5 architecture.	(20) essor
List the steps taken by 8086 In 8086 bus cycle, explain the	processor in response e significance of ALE sig	to receiving an interrup gnal.	ot.
(22)a)Classify and explain 8086 b) Explain in brief 8086-8087 cla		ation system. ((10) (10)
(3) a) Explain 8086 in its minim Explain the following 8086 in		1.	(10)
CMPSB ii) DIV AX iii) LOOPE	again iv) REP SCASB \) XLATB ((10)
(4) a) Write a detailed note on Explain the need for DMA an	the interrupt structure d modes of DMA data		(10) (10)
(5) a) Explain the architecture (egmentation. Explain the need for bus arbit		(10)
osely coupled configuration sy	ystems.		(10)
6) Write short notes on: [ANY Programmable interrupt cont Programmable peripheral interrupt cont	roller – 8259.		(10) (10)

c) 8086 addressing modes.

Sem - IX Paper / Subject C

Q. P. Code: 26210

[Time: Three Hours]

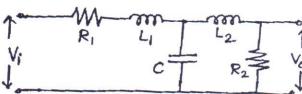

[Marks: 80]

NB:-

- a) Question number 1 is compulsory.
- b) Attempt any three questions out of remaining questions.
- c) Assume suitable data wherever necessary.
- 1. Attempt any four of the following questions:

20

- a) A feedback control system is represented by the characteristic equation, $S(S^2+S+1)$ (S+4) + K = 0. Find the range of K for making the system stable.
- b) State and prove the properties of the State Transition Matrix.
- c) What are the effects of a PD controller on a system?
- **d)** Define different static error coefficients. State the equations for the error in a TYPE 0 system subjected to Step, Ramp and Parabolic input.
- e) Explain the Mason's Gain formula with reference to Signal Flow Graph technique.
- a) Derive the expression for output response of a second order under-damped control system, subjected to the Unit Step Input.
 - b) Find the equivalent transfer function from R to C of the following system using the block diagram reduction technique.

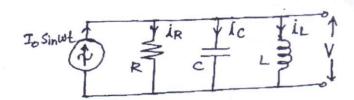


3. a) A unity feedback system has $G(s) = \frac{40 (s+2)}{s(s+1) (s+4)}$.

10

Determine:

- (i) Type of the system.
- (ii) All error coefficients.
- (iii) Error for ramp input with magnitude 4.
- b) Obtain the transfer function of the following electrical system using Signal Flow Graph 10 technique.


TURN OVER

Q. P. Code: 26210

20

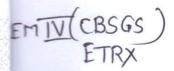
2

4. a) Obtain the State variable model of the parallel R-L-C network shown below: 10

b) Test the controllability and observability of the system described by:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} u$$
and $y = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} x$

Sketch the Bode Plot and determine G.M. & P.M. for the open loop transfer function given by


$$G(s) = \frac{4(s+5)(s+10)}{s^2(s+20)}$$

b) Construct the Root Locus for the following transfer function:

$$G(s)H(s) = \frac{K(s+13)}{s(s+3)(s+8)}$$

- **6.** Write short notes on any three of the following:
 - a) Model predictive control system.
 - b) Gain Margin and Phase Margin.
 - c) PID Controller.
 - d) Open Loop and Closed Loop control system.

32D6CAE73823A2A9FE2C2E7C15759E52

Paper / Subject Code: 39306 / ELECTRICAL MACHINES / MAY 2019

[Marks:60]

[Time: 3 Hours]

2. Attempt any three questions from remaining five questions.

Please check whether you have got the right question paper.

1. Question.No.1 is compulsory.

	3. Figures to right indicate full marks.	
	4. Assume suitable data, if any.	
Q1	Attempt any three:	
	(a) A 6 pole, 50Hz Induction motor has a full load speed of 950 rpm. Calculate slip.	05
	(b) Derive emf equation of a dc motor	05
	(c) State the important applications of brushless DC motor	05
	(d) Explain v/f method of speed control of 3 phase induction motor	05
Q2		
	(a) Develop equivalent circuit of a 3-phase Induction motor.	08
	(b) Explain the working of capacitor start Induction motor.	07
Q3		
	(a) Describe the construction and working principle of a variable reluctance motor	08
	(b) With neat diagram, discuss the working of a3 point starter in a dc motor.	07
Q4		
	(a) Name different types of unipolar brushless DC motor& describe any one type in	08
	detail	
	(b) What are the advantages, disadvantages & applications of Switched reluctance	07
	motors?	
Q5		
	(a) Compare 3 phase induction motor with 3 phase synchronous motor.	07
	(b) Describe torque-slip characteristics of a three phase induction motor in 4 modes	08
Q6	Write short notes on:	
	(a) 3 point starter of a DC motor	05
	(b) Permanent magnet synchronous motor.	05
	(c) Double field revolving theory	05