man D) CBS (S) micromolesson mals

Q. P. Code: 21318

(Time: 3Hrs) Max Marks: 80

L Question No.1 Compulsory.

2 Solve any THREE from Q.2 to Q.6

3. Assume suitable data whenever necessary with justification.

QL		Solve any FOUR.	
	(A)	Explain Memory banks for 8086 Processor	(5)
	(B)	Draw and Explain Floating Point Pipeline for Pentium Processor.	(5)
	(C)	Explain Multitasking and Protection for 80386 processor	(5)
	(D)	Explain Flag Register bits of 8086.	(5)
	(E)	Explain Virtual Mode (VM86) 80386 Processor.	(5)
E.	(A)	Explain Interrupt Structure of 8086 Processor.	(1
	(B)	Explain PPI 8255 with block diagram.	(1
E	(A)	Draw and Explain write operation timing diagram for maximum mode.	(1
	(B)	Explain Operating Modes of PIC 8259.	(1
je.	(A)	Explain following instructions. DAA, AAA, XLAT, LAHF	(1
	(B)	Explain Segment Descriptor of 80386 Processor.	(1
E.	(A)	Explain Gate type of descriptors.	(1
	(B)	Explain Data Cache architecture for Pentium Processor.	(1
No.	(A)	Explain SPARC Processor with block diagram.	(1
	(3)	Explain with block diagram PIT 8254	(1

TE-SEM V/Rev. 2012 (CBSGS) / CMPN / MAY 2018 Operating Systems Q.P. Code: 39373

(Time: 3hrs) (Marks: 80)

- 1. Question 1 is compulsory.
 - 2. Attempt any three from remaining five questions.
 - 3. Figure in right indicate full marks

a	Defin Expla	ne Opera ain syste	em call a	tem? Wh	its typ	es.		?	5
9				d mediu					5
d				of multip		~ ~ ~ ~			5
	State	Characte	eristics o	n good p	locess	schedi	ner.		5
Wha	t is dead	llock? E	xplain n	ecessary	and su	fficien	t condi	tions for a deadlock to occur.	10
Expl	ain in de	etail pag	e table s	tructures					10
Expl	ain LIN	UX oper	rating sy	stem wit	h kern	el, men	nory m	nanagement and IO management.	10
	Rl	R2	R3		Rl	R2	R3		10
71	3	2	2	Pl	1	0	0		
22	6	1	3	P2	6	1	2		
25	3	1	4	P3	2	1	1	(2)	
P4	4	2	2	P4	0	0	2	R1 R2 R3	
	Claim matrix C				Allo	cation ma	nix A	9 3 6 Resource vector R	

Consider above snap shot of the system

Calculate available vector 2. Calculate need matrix 3. Calculate safe sequence 4. Is system a safe state?

Explain the different allocation methods with reference to file system. Explain algorithm to avoid deadlock in dinning philosopher's problem.	10 10
pare the following disk scheduling algorithms using appropriate example – FCFS,SCAN,C-SCAN,LOOK	10
is mutual exclusion? Give software approaches for mutual exclusion.	10
in need of page replacement. Explain optimal page replacement policy with example.	10
Explain UNIX file system	10

Page 1 of 1

may 2018

T.E. SEN T CMPH CBSGS.

Q. P. Code: 24646

Duration - 3 hours

Maximum Marks - 80

- 1 Question No 1 is compulsory.
- Attempt any 3 questions from the remaining 5 questions.
- 3. Draw neat diagrams wherever necessary.

Explain in Brief:

20

10

- a. Explain the method to find number check bits required to correct single bit error for a 10 bit message and compute the check bits for 11100 00101.
- Encode the message 101111100001 using binary encoding,
 Manchester encoding and differential Manchester encoding
- c. Find the shortest path between A and D using Dijkstra Algorithm.

- **d.** What are the different world wide unique identifiers? Explain the components of Uniform Resource Locators.
- Explain how a strong Generator Polynomial is formed. Give the Algorithm 10 for computing the checksum.
- 2(b) Explain any two collision free protocols 10
- Explain the reasons for congestion in a network. Explain open loop congestion control methods.
- 3(b) Explain TCP IP reference model and compare it with OSI reference model.
- Explain how the value of 'n' is decided in an n bit sliding window protocol. Explain the advantages of Selective repeat over go-back n protocol.

Q. P. Code: 24646

Q.No. 4(b)	Prove that the slotted ALOHA performs better than Pure ALOHA.	10
Q.No. 5(a) Q.No. 5(b)	Compare Guided media w.r.t unguided media Compare Routing protocols RIP, OSPF and BGP	10 10
Q.No. 6	Give Short notes on any two a. DNS	20
	b. SNMP c. Sockets and Socket Programming	