University of Mumbai

Examinations Summer 2022

Time: 2 hour 30 minutes Max. Marks: 80

Note to the students:- All Questions are compulsory and carry equal marks.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1	A system is said to be if it is possible to transfer the system state from any initial state to any desired state in finite interval of time.		
Option A:	Cannot be determined		
Option B:	Observable		
Option C:	Controllable		
Option D:	Controllable and observable		
1			
2	A control system in which the control action is somehow dependent on the output is known as		
Option A:	Closed loop system		
Option B:	Semi closed loop system		
Option C:	Open system		
Option D:	Non feedback control system		
2			
3	Consider the systems given by System 1: $-\dot{x} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$		
Ä	System 2: $-\dot{x} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$		
Option A:	System 1 & system 2 both are controllable		
Option B:	System 1 is not completely state controllable but System 2 is completely state controllable		
Option C:	System 1 is controllable but System 2 is not completely state controllable		
Option D:	System 1 & system 2 both are not controllable		
	The system is represented by $\dot{x} = Ax + Bu$ where $A = \begin{bmatrix} -1 & 2 \\ 1 & -5 \end{bmatrix}$; $B = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$; and state feedback given as $u = -[3 \ 2]x = -Kx$.		
	Find the desired characteristic equation.		
Option A:	$s^2 + 5s - 4 = 0$		
Option B:	$s^2 - 5s + 4 = 0$		
Option C:	$s^2 + 5s + 4 = 0$		
Option D:	$s^2 - 5s - 4 = 0$		
	2,43,6,8,8,8		
500000	The equation for full state observer is given as:		
Option A:	$\dot{\tilde{x}} = (A - KC)\tilde{x} + Bu + K_e y$		
Option B:	$\dot{\tilde{x}} = (A - K_e C)\tilde{x} + Bu + Ky$		
Option C:	$\dot{\tilde{x}} = (A - KC)\tilde{x} + Bu + Ky$		

Option D:	$\dot{\tilde{x}} = (A - K_e C)\tilde{x} + Bu + K_e y$		
6	With regard to the filtering capacity the lead compensator and lag compensator are respectively:		
Option A:	Low pass and high pass filter		
Option B:	High pass and low pass filter		
Option C:	Both high pass filter		
Option D: Both low pass filters			
7	Lead compensator – i) Speeds up transient response ii) Increases the margin of stability iii) Does not affect the system error constant Of these statements		
Option A:	ii and iii are correct		
Option B:	i and ii are correct		
Option C:	i and iii are correct		
Option D:	i, ii, and iii are correct		
8	The compensator $G(s) = 5(1+0.3s)/(1+0.1s)$ would provide a maximum phase shift of:		
Option A:	45°		
Option B:	$\frac{45^{\circ}}{60^{\circ}}$		
Option C:	$\frac{60}{30^{0}}$		
Option D:			
9	PID controller:		
Option A:	Rise time decreases		
Option B:	Decreases steady state error and improves stability		
Option C: \Diamond	Transient response becomes poorer		
Option D:	Increases steady state error		
10	According to Ziegler-Nichols first method of tuning of PID controller –		
Option A:	$K_P = 1.2T/L, T_I = 2L, T_D = 0.5L$		
Option B:	$K_P = 1.4T/L$, $T_1 = 2.5L$, $T_D = 0.5L$		
Option C:	$K_P = 1.2T/L$, $T_I = 2.2L$, $T_D = 0.05L$		
Option D:	$K_P = 1.25T/L$, $T_1 = 2.2L$, $T_D = 0.5L$		

Q2	Solve any Two Questions out of Three	10 marks each
(20 Marks)		
	Obtain Cascade realization for system having follow equation $\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = u$	ving differential
B	Write down the design steps of Lag Compensator in	n frequency domain

If $G(s) = \frac{k}{s(s+4)(s+6)}$ for which the PD compensator is to be designed such that the compensated system exhibits 12% peak overshoot and has settling time equal to 1 sec.

Q3 (20 Marks)	Solve any Two Questions out of Three	10 marks each
A	Examine and comment on controllability for $ \begin{bmatrix} \mathbf{x}_1^{\mathbf{x}} \\ \mathbf{x}_2^{\mathbf{x}} \\ \mathbf{x}_3^{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_$	
В	Examine and Comment on observability for $ \begin{bmatrix} x \\ x \\ x \\ x \\ x \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} $ $ y = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	
C	Find STM where $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$	

Q4 (20 Marks)	Solve any Two Questions out of Three 10 marks each	
	A If $G(s) = \frac{k}{s(s+4)(s+6)}$ for which the PD compensator is to be design such that the compensated system exhibits 12% peak overshoot and settling time equal to 1 sec.	
B	Write down the design steps of Lead Compensator in frequency domain	
	Open loop transfer function of the plant is $G(s) = \frac{1}{s(s+1)(s+5)}$ Obtain the values of tuning parameters Kp, Td and Ti using Zigler-Nichols method for PID design.	