TE/ETRX/Sem-VI/C2019/Basic VLSI Design University of Mumbai Paper

Examinations Summer 2022

Paper Code: 92057

Time: 2 hour 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1	Which condition is true for scaling factor S:	
Option A:	S<1	
Option B:	S=1 ·	
Option C:	S=0	
Option D:	S>1	
2	If the Noise Margin of the circuit increases then Noise Immunity	
Option A:	Increases	
Option B:	Decreases	
Option C:	No change	
Option D:	All of the above	
3	How many MOS require for designing 2-i/p NAND Gate using static CMOS Design Style.	
Option A:	NMOS-1, PMOS-2	
Option B:	NMOS-2, PMOS-2	
Option C:	NMOS-1, PMOS-1	
Option D:	NMOS-2, PMOS-1	
4	For a symmetric CMOS inverter, which condition is true?	
Option A:	$(W/L)_P = 1.5 (W/L)_N$	
Option B:	$(W/L)_N = 1.5 (W/L)_P$	
Option C:	$(W/L)_P = 2.5 (W/L)_N$	
Option D:	$(W/L)_N = 2.5 (W/L)_P$	
5.	CMOS domino logic is the same as with an inverter at the output line.	
Option A:	clocked CMOS logic	
Option B:	dynamic CMOS logic	
Option C:	gate logic	
Option D:	switch logic	
6	In the circuit shown, A and B are the inputs and F is the output. What is the functionality of the circuit?	
	Vdd	
	L4C	
3 ° y		
	F B	
Option A:	XOR	
Option B:	SRAM Cell	
Option C:	Latch	
option C.	Daton	

Option D:	NOR
7	To Hearth at
. /	Following diagram represents which design style:
	1
	0 0 − 0 − 0,
	G TOY
	A O BON EDN
	Co-Little
	φ → □ e.
Ontion A.	
Option A: Option B:	CMOS Domino Logic CMOS static logic
Option C:	Pass transistor logic
Option D:	CMOS Dynamic Logic
8	In the following circuit if R1, R2, R3, R4 logic level is 0001 then C1,C2,C3,C4
	logic level will be
	Vob Vob Vob Vob
	R1 — [] — [] — []
	<u> </u>
	R3
	+ +
	RA HET TO THE TOTAL PARTY OF THE
	<u></u>
	cr ce ce . ca
Option A:	0101
Option B:	0011
Option C:	0110 1001
Option D.	1001
9	All DRAM requires periodic refreshing of data because
Option A:	Stored data can be modified
Option B:	Data stored as charge in a capacitor can't be retain indefinitely
Option C:	Stored data can be erased
Option D:	Data can be written in memory

10.	paper coar 92
IV.	b2 a2 b1 a1 b0 a0
	Carry-out FA C1 FA C0 Carry-in
	±2 51 50
	Adder circuit shown in the above fig. is where a_n and b_n are input bits and C_n & S_n are carry and sum respectively.
Option A:	3bit Carry look ahead adder
Option B:	4 bit Carry look ahead adder
Option C:	3 bit Ripple Carry Adder
Option D:	4 bit Ripple Carry Adder

Q2	Solve any Four out of Six	5 marks each
A	Compare Bipolar, NMOS and CMOS technologie	
В	Compare SRAM and DRAM.	
C	Design a 4:1 MUX using nMOS pass transistor lo	gic.
D	Draw VTC of CMOS inverter. Show all critical vo	oltages in it.
E	Compare Static CMOS, Dynamic CMOS and Pseu	udo nMOS logic
F	Explain basic Manchester Carry Circuit with suita	ble diagram.

Q3	Solve any Two Questions out of Three	10 marks each
Α	Calculate noise margin of a CMOS inverter with NMOS $V_{To,n}$ =0.6V, k_n =200uA/V ² , PMOS $V_{To,p}$ =-0.7V, k_p =80uA/V ² , V_{DD} = 3.3V.	the given parameters:
В	Implement the following function Y=(A+B)(C+D I) Static CMOS Logic II) Dynamic CMOS Logic III) Pseudo nMOS Logic)E using:
C	Draw 6T SRAM cell structure using MOS. operations in detail.	Explain read, write and hold

Q4		
A	Solve any Two 5 marks each	
i.	Design a 4*4 NAND based ROM, which stores the following words: Row(0) 1000 Row(1) 1111 Row(2) 0111 Row(3) 1110	
ii.	Design a half adder using Transmission Gate logic.	
iii.	Compare Constant Voltage scaling and Full scaling with respect to following MOS parameters: Oxide Capacitance, Packing Density, Power Dissipation, Drain current and Saturation Current.	
В	Solve any One 10 marks each	
i.	Explain 4 bit CLA adder with its carry equation. Draw the logical network using dynamic CMOS logic.	
ii.	Design Master slave JK Flip Flop using any MOS Design Style.	

University of Mumbai Examination 2022 under Cluster

(Lead College:)

Paper Code: 93463

Examinations Commencing from 17th May 2022

Program: Electronics Engineering

Curriculum Scheme: Rev-2019 Examination: T.E. Semester VI

Course Code: ELC602

Time: 2:30-hour

Course Name: Electromagnetic Engineering

Max. Marks: 80

N.B. Use Smith Chart to solve transmission line Problem

Q1	Choose the correct option for following questions. All the Questions ar compulsory and carry equal marks (20 Marks)
1.	Find the force in N between $Q1 = 2C$ and $Q2 = -1C$ separated by a distance 1m in air.
Option A:	18 X 10 ⁶ N
Option B:	-18 X 10 ⁶ N
Option C:	18 X 10 ⁻⁶ N
Option D:	-18 X 10 ⁻⁶ N
2.	Gauss's law is true only if force due to a charge varies as
Option A:	r-1
Option B:	r-3
Option C:	r-2
Option D:	r-4
3.	Find the displacement current when the flux density is given by t ³ at 2 seconds
Option A:	12
Option B:	6
Option C:	3
Option D:	27
4.	The magnetic vector potential for a line current will be inversely proportional to
Option A:	dl
Option B:	I
Option C:	$\frac{1}{J}$
Option D:	R
5.	Displacement current depends on
Option A:	Moving Charges
Option B:	Change in time
Option C:	Moving Charges and Change in time
Option D:	Differential Moving Charges and cumulative time period
6.	The inductance of single-phase, two-wire transmission line per kilometer gets doubled when the
Option A:	Distance between the wires is increased as square of original distance

	reper code: 33463	
Option B:	: Distance between the wires is doubled	
Option C:	- I was as an included for	
Option D:	Radius of the wire is doubled	
7.	The characteristic impedance of a transmission line with impedance and	
	admittance of 16 Ω and 9 δ respectively is	
Option A:		
Option B:	1.33	
Option C:		
Option D:	25	
8.	The ratio of radiation into its in the ratio	
	The ratio of radiation intensity in a given direction from antenna to the radiation	
Option A:	intensity over all directions is called as	
	Gain of antenna	
Option B:	Radiation power density	
Option C:	Array Factor	
Option D:	Directivity	
9.	To well-in a Call a Call and a call a	
9.	In which of the following the power is radiated through a complete spherical surface	
Option A:	Half-wave dipole	
Option B:	Quarter-wave Monopole	
Option C:	Both Half-wave dipole & Quarter-wave Monopole	
Option D:	Full wave dipole	
10.	The effects of EMI can be reduced by	
Option A:	Suppressing emissions	
Option B:	Reducing the efficiency of the coupling path	
Option C:	Suppressing emissions, Reducing the efficiency of the coupling path and	
	Reducing the susceptibility of the receptor	
Option D:	Increasing the efficiency of the coupling path and emissions	
28	o and coupling path and chinosions	

7 U=0.6C

Q2.	Solve any Two of the Following 20 Mark	
A	Derive an expression of Electric Field Intensity due to infinite line charge at any point P on z-axis.	
В	A lossless transmission line with $Z_0 = 50 \Omega$ is 30 m long and operates at 2 MHz. The line is terminated with a load $Z_L = 60 + j40 \Omega$. If $u.5 \ 0.6c$ on the line, where c is velocity of light. Use Smith Chart to find (a) The reflection coefficient Γ (b) The standing wave ratio s (c) The input impedance Z_i	
C	Write Maxwell's equations in time harmonic field form	

Q3.	Solve any Two of the Following 20 Marks
A State and explain Maxwell's equations for differential and integral form f field.	
В	State Poynting theorem and derive an expression for the Poynting vector. Explain the power terms mentioned in the derivation

Q4.	Solve any Two of the Following	20 Marks
A	Explain the terms radiation pattern, directivity, Beam	width and directive gain of
	the antenna.	
В	Explain in detail the sources and the characteristics of EM	I. EMI control techniques

Derive an expression for transmission line equation for two wire line problem.

212 - Pallowi Gargarle 213 - Himar Parel. 214 - Shokhil Ehandare &

University of Mumbai

Examinations Summer 2022

Program: Electronics Engineering

Paper code-93509

Curriculum Scheme: Rev2019
Examination: TE Semester VI

Course Code: ELC603 and Course Name: Computer Communication Networks

Time: 2 hour 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Network topology in which you can connect each node to the network along a single piece of network cable is called
Option A:	Star topology
Option B:	Bus topology
Option C:	Mesh topology
Option D:	Ring topology
2.	Which OSI layer is known as Medium Access control Layer (MAC)
Option A:	Physical Layer
Option B:	Application Layer
Option C:	Transport Layer
Option D:	Data Link Layer
3.	Which of the following best suits the User Datagram Protocol (UDP)
Option A:	Unreliable
Option B:	Congestion Control
Option C:	Flow Control
Option D:	Velocity Control
4.	What is the size of the IP address of IPv4 in bytes?
Option A:	32
Option B:	16
Option C:	4
Option D:	10

Paper Code 93509 5. In the network layer which addressing is done? Option A: Physical addressing Option B: Logical addressing Option C: Port addressing Option D: Specific addressing 6. Which of the following is used for short range communication? Option A: Fiber optic cable Option B: Infrared wave Option C: microwave Option D: Coaxial cable 7. The transition from IPv4 to IPv6 is not possible from the following strategies Option A: Dual Stack Option B: Subnetting Option C: Tunneling Option D: Header translation 8. , the chance of collision can be reduced if a station senses the medium before trying to use it Option A: MA Option B: **CSMA** Option C: **CDMA** Option D: **FDMA** 9. Data field is not present in following frame Option A: I-frame Option B: U-frame Option C: S-frame Option D: A-Frame

Paper code 93509

10.	Simple Mail Transfer Protocol (SMTP) is
Option A:	Pull Protocol
Option B:	Push Protocol
Option C:	Forward Protocol
Option D:	Backward Protocol

Q2	Solve any Two Questions out of Three 10 marks each
A	Describe different Addresses (MAC address, IP address, Port address, Specific address) used in networking with examples
В	Describe ADSL with respect to channel configuration, Modulation technique and Equipment setup
С	Explain Stop-And-Wait ARQ Protocol & list the advantages & disadvantages of Stop-And-Wait ARQ Protocol

Q3	Solve any Two Questions out of Three	10 marks each
A	A Draw and explain IPV4 header. Compare IPV4 v	
В	Explain TCP/IP Protocol Suite. Distinguish be TCP/IP model	tween OSI model and
С	Explain Sliding window flow control protocol w diagram	vith the help of suitable

Q4	Solve any Two Questions out of Three 10 marks each
A	What are causes & effects of Congestion in the Transport layer? Explain different congestion control mechanisms
В	Explain Time Slot Interchange Switch with the help of suitable diagram
С	Explain Domain Name System (DNS) in application layer with the help of suitable diagram

University of Mumbai Examination Summer 2022

Program: BE Electronics Engineering

Program No.: 1T01136

Name of the Examination: T.E. (Electronics Engineering) (SEM-VI)

(Choice Base Credit Grading System) (R-19) (C Scheme)

Subject (Paper Code):89368 // Digital Design with Reconfigurable Architecture (DLOC)

Time: 2-hour 30 min

Paper code-94325.

Max. Marks: 80

Note:- Choose the correct option for the following questions. All the questions are compulsory and carry equal marks.		
Q1.	If the declarative part in the architecture of a half adder is as below, identify the type of architecture.	
	component XOR2 port (X,Y:in BIT, z: out BIT); end component; component AND2 port (L,M:in BIT, z:out BIT); end component;	
Option A:	behavioral	
Option B:	structural	
Option C:	dataflow	
Option D:	mixed Design	
Q2.	Which flipflop does possess the following state diagram? 1X 0X 0 1X	
Option A:	X1 JK flip flop	
Option B:	T flip flop	
Option C:	SR flip flop	
Option D:	D flip flop	

Q3.	Which Method is not a State Reduction Technique?
Option A:	Implication Chart Method
Option B:	Inspection Method
Option C:	Partition Method
Option D:	One-Hot Encoding Method
Q4.	process (clk) variable A,B,C,D: std_logic:= '0'; begiin if clk'event and clk='1' then A <= Sin: B <= A; C <= B;
	$D \leq C;$
	end if;
	$Pout \Leftarrow A\&B\&C\&D$
	end process
	In the above code, if input signal Sin = '1' then at the end of 1 cycle at clk, the output Pout will be
Option A:	0001
Option B:	0000
Option C:	1000
Option D:	1111
Q5.	Which among the following state machine notations are generated outside the sequential state machine?
Option A:	Input variables
Option B:	Output variables
Option C:	State variables
Option D:	Excitation variables
Q6.	In VHDL an attribute, S'LAST_EVENT returns
Option A:	Boolean value TRUE or FALSE
Option B:	Bit '1' or '0'
Option C:	Last value of S
Option D:	the time since the last event on signal S
Q7.	Which of the following is the correct sequence of steps of Digital design with FPGA?
Option A:	Design Entry, Mapping, Place and route, Simulation, Bit stream generation, Synthesize
Option B:	Design Entry, Simulation, Synthesize, Mapping, Place and route, Bit stream generation
Option C:	Bit stream generation, Design Entry, Simulation, Synthesize, Mapping, Place and route
Option D:	Simulation, Synthesize, Design Entry, Place and route, Mapping, Bit stream generation

Q8.	What does an arrow indicate in the schematic format of process statement given below?
199	?
	ma: Process (a,b,c,d_ in) Variable m_tmp:bit_vector(7 down to zero):="00000000", Begin div_tmp:= a/b; diff<=div_tmp- c-d_in; End process
Option A:	Variable declaration
Option B:	Process body
Option C:	Process label
Option D:	Sensitivity List
Q9.	Characteristic equation of J-K flipflop is
Option A:	$Q_{n+1} = Q'_{n}J + Q_{n}K'$
Option B:	$Q_{n+1} = Q_n J + Q'_n K'$
Option C:	$Q_{n+1} = Q_n J' + Q_n K$
Option D:	$Q_{n+1} = Q'_{n}J' + Q_{n}K$
Q10.	Which mode in VHDL allows to make the signal assignments to an output port while preventing it from reading?
Option A:	IN
Option B:	INOUT
Option C:	OUT
Option D:	BUFFER

Q.2	Answer any Two questions out of Three	(10 marks each)
A	Write a VHDL code that divides the Clock frequency by 1	0.
В	i) Write a VHDL code of T flipflop. ii) Using T flipfop as a component write a code for 4 bit as:	ynchronous counter.
С	Write a VHDL code for serial adder.	

Solve any two questions out of Three	(10 marks each)
Write short notes on the following:	
i) Clock management in FPGA.	
ii) Operators used in VHDL with examples	
i) Explain Booth Multiplication with example.	100
ii)Write a VHDL code for Booth's multiplier.	
Explain SRAM based FPGA architecture in detail.	
	Write short notes on the following: i) Clock management in FPGA. ii) Operators used in VHDL with examples i) Explain Booth Multiplication with example. ii) Write a VHDL code for Booth's multiplier.

Q.4	Answer any Two questions out of Three (10 marks each)
A	Design a Mealy sequence detector circuit to detect an overlapping sequence "10110" using D flip flop and logic gates.
	Analyze the sequential-state machine shown in the following figure. Obtain state table and state diagram for the same.
В	X1 D Ck Ck Ct
	Shown below is the state diagram for sequential machine reduce it and design using D Flip Flop.
С	e b 0/0 c 1/1 1/0 1/0 1/1

TE / ETRX/Sem-VI/(2019/Machine Learning/May-2022 University of Mumbai

Examinations Summer 2022

Time: 2 hour 30 minutes

Paper Code-93775 Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions a compulsory and carry equal marks
1.	Machine learning is a branch of
Option A:	Artificial intelligence
Option B:	speech processing
Option C:	Language processing
Option D:	java
2.	What does K stand for in K mean algorithm?
Option A:	Number of Clusters
Option B:	Number of Data
Option C:	Number of Attributes
Option D:	Number of Iterations
3.	Feature selection tries to eliminate features that are
Option A:	Rich
Option B:	important
Option C:	Irrelevant
Option D:	Relevant
4.	During the treatement of cancer patients, the doctor needs to be very careful about which patients need to be given chemotherapy. Which metric should we us in order to decide the patients who should given chemotherapy?
Option A:	precision
Option B:	recall
Option C:	call
Option D:	score
5.	Targetted marketing, Recommended Systems, and Customer Segmentation are applications in which of the following
Option A:	Supervised Learning: Classification
Option B:	Unsupervised Learning: Clustering
Option C:	Unsupervised Learning: Regression
Option D:	Reinforcement Learning
6.	CART stands for
Option A:	classification and regression tree
Option B:	choosing a regression task
Option C:	classification and regression task
Option D:	classification along regression task
7.	Naïve Bayes Algorithm is a learning algorithm.
Option A:	Supervised
Option B:	Reinforcement
Option C:	Semi supervised
	Unsupervised

76	Paper code - 9	3775	
8.	Which of the following can only be used when training data are linearl separable?	ing data are linearly	
Option A:	linear hard-margin svm		
Option B:	linear logistic regression		
Option C:	linear soft margin svm		
Option D:	the centroid method		
9.	Impact of high variance on the training set?		
Option A:	depents upon the dataset	200	
Option B:	underfitting		
Option C:	both underfitting & overfitting	.1,	
Option D:	overfitting		
10.	What do you mean by a hard margin?		
Option A:	The SVM allows very low error in classification	7	
Option B:	The SVM allows very high error in classification		
Option C:	The SVM allows no error in classification		
Option D:	The SVM does not allow error in classification		

Q2. (20 Marks Each)	Solve any Two Questions out of Three 10 marks each
A	Explain the steps of developing Machine Learning applications in detail.
В	Explain regression line, scatter plot, error in prediction; best fitting line.
C	Cluster the following eight points (with (x, y) representing locations) into three clusters: A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9) Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2). The distance function between two points $a = (x1, y1)$ and $b = (x2, y2)$ is defined as- $d(a, b) = x2 - x1 + y2 - y1 $ Use K-Means Algorithm to find the three cluster centers after the one
	iteration
Q3. (20 Marks Each)	Solve any Two Questions out of Three 10 marks each
A	Compare and contrast Linear and Logistic regressions with respect to their mechanisms of prediction.
В	Explain in detail PCA for dimension reduction.

	T -: 1		14	60 (byc	-937	1-
	Find comp	olete linkage metho	od of hie	erarchie	cal clu	stering to fi	nd cluste
	of 5 data p	points with followi	ng dista	nce ma	trix.	and War	
		1	2	3 4	5		
		1 0	9	3 6	11		
C		2 9	0	7 5	10		
		3 3	7	0 9	2	3	
		4 6	5	9 0	8	3 3 32 31	
		5 11	10	2 8	0		
	0.1			1 1			7.4
Q4.	Solve any	Two Questions o	ut of Th	iree		10 ma	arks eac
20 Marks Each)							
A	Explain K-	-mean clustering a	gorithm	giving	g suita	ble example	. Also.
	explain ho	w K-mean clusteri	ng diffe	rs fron	hiera	rchical clus	tering.
В	What is su	pport vector mach	ne? Wh	at do y	ou me	an by suppo	ort
	vectors, hy	per plane and mar	gin,supp	ort ve	ctors?	What will be	e the
	boundary f	for one dimensiona	l data, t	wo din	nensio	nal data and	three
	dimensiona	al data. Explain wi	.1 . 1				
	The state of the second second second second	ai data. Explain wi	th suitat	ole exa	mples		
	What is SV	/M? Explain the fo	llowing	terms	hype	rplane, sepa	rating
С	What is SV hyperplane		llowing ort vector	terms	hype n suita	rplane, sepa	rating
С	What is SV hyperplane	/M? Explain the fo	llowing ort vecto ini inde	terms ors with x to cla	hype n suita	rplane, sepa ble example following da	rating
С	What is SV hyperplane Create a de	/M? Explain the formargin and supportion tree using g	llowing ort vector	terms ors with x to cla	hype n suita	rplane, sepa ble example following da	rating
С	What is SV hyperplane Create a de	/M? Explain the formargin and supportions tree using g	ort vectorini inde	terms ors with x to cla	hype n suita	rplane, sepa ble example following da Own house	rating
C	What is SV hyperplane Create a de	/M? Explain the formargin and supportion tree using g	ollowing ort vector ini inde	terms ors with x to cla	hype n suita	rplane, sepa ble example following da Own house Yes	rating
C	What is SV hyperplane Create a de	/M? Explain the formargin and supportion tree using government. Income Very high	Ag Yo Me	terms ors with x to cla ge	hype n suita	rplane, sepa ble example following da Own house Yes Yes	rating
C	What is SV hyperplane Create a de Sr. No.	/M? Explain the formargin and support cision tree using good lincome Very high High	Ag Yo Me	terms ors with x to cla ge oung edium oung	hype n suita	own house Yes No	rating
C	What is SV hyperplane Create a de Sr. No.	VM? Explain the formargin and supportions tree using good linear	Ag Yo Me Yo Me	terms ors with x to cla ge oung edium oung	hype n suita	own house Yes No Yes	rating
C	What is SV hyperplane Create a de Sr. No. 1 2 3 4	/M? Explain the formargin and supportions tree using good linear	Ag Yo Me Yo Me	terms ors with x to cla ge oung edium oung edium edium,	hype n suita	own house Yes No Yes Yes	rating
C	What is SV hyperplane Create a de Sr. No. 1 2 3 4 5	VM? Explain the form the form tree using good section	Ag Yo Me Yo Me Yo Yo	ge edium edium edium	hype n suita	own house Yes No Yes Yes Yes	rating
C	What is SV hyperplane Create a de Sr. No. 1 2 3 4 5 6 7	VM? Explain the formargin and supportions tree using good section tree using g	Ag Yo Me Yo Old	ge edium edium edium edium	hype n suita	own house Yes No Yes	rating
C	What is SV hyperplane Create a de Sr. No. 1 2 3 4 5 6 7 8	VM? Explain the form the form the form the consistency of the consiste	You Me You Old Me	terms ors with x to cla ge oung edium oung edium oung di edium	hype n suita	own house Yes No Yes Yes Yes Yes Yes	rating
C	What is SV hyperplane Create a de Sr. No. 1 2 3 4 5 6 7 8 9	VM? Explain the form margin and supportions tree using good line with the line with th	You Me You Old Me Me	ge edium	hype n suita	own house Yes No Yes Yes Yes Yes No Yes Yes Yes No No No	rating
	What is SV hyperplane Create a de Sr. No. 1 2 3 4 5 6 7 8 9 10	VM? Explain the formargin and supportions tree using good section tree using g	You Me You Old Me Old Old	ge edium edium edium edium	hype n suita	own house Yes No Yes Yes Yes No No No	rating
C	What is SV hyperplane Create a de Sr. No. 1 2 3 4 5 6 7 8 9	VM? Explain the form margin and supportions tree using good line with the line with th	You Me You Old Me Old Old	ge oung edium	hype n suita	own house Yes No Yes Yes Yes Yes No Yes Yes Yes No No No	rating

TE/ETRX/Sem-YI/C2019/ May-2022 University of Mumbai

Examinations summer 2022

Paper Code: 93460

Time: 2 hour 30 minutes Embedded Systems & Real Time Operating Systems

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	is a serial communication interface in Embedded system
Option A:	Bluetooth
Option B:	Cortex M3
Option C:	DMA controller
Option D:	ARM processor
2.	Sensor is commonly used in Cruise control application.
Option A:	Thermal
Option B:	Heart rate
Option C:	Ultraviolet
Option D:	Proximity
3.	What does UML stand for?
Option A:	Universal model language
Option B:	Unified Modeling language
Option C:	Unit modeling language
Option D:	Unit model Line
-P	
4.	can be used as a embedded system core.
Option A:	ASIC
Option B:	DMA Controller IC
Option C:	USART IC
Option D:	RS - 232
5.	Which testing method is known as White Box testing?
Option A:	A method which uses white coloured box
Option B:	A method which needs check system code & behavior of internal structures.
Option C:	A method which does not check for errors.
Option D:	A method which tests the functionality of application, without peering into its interna structures or workings.
6.	One of the major drawbacks of assembly language programming over C is
Option A:	Higher memory requirements
Option B:	program executes faster
Option C:	Every processor has its own instruction set.
Option D:	hardware specific instructions are available
7.	is a time critical embedded real time system .
	Missile control
Option A:	Weather monitoring
Option A: Option B:	
	Coffee vending machine
Option B:	
Option B: Option C:	Coffee vending machine

Option B:	the condition in which a high priority task needs to wait for a low priority task		
Option C:	the act of increasing the priority of a process.		
Option D:	the act of decreasing the priority of a process dynamically		
9.	Which one of the following embedded systems does not require an operating system?		
Option A:	Air-craft control		
Option B:	Car cruise control system		
Option C:	Missile control		
Option D:	Automatic Chocolate Vending machine		
10.	is a key for resource sharing.		
Option A:	Semaphore		
Option B:	Pipes		
Option C:	Context Switch		
Option D:	Queue		

Q2. (20 M)	Solve any Two Questions out of Three	10 marks each
A	Draw and Explain with neat diagram waterfall me	odel.
В	Discuss the significance of Low Power modes in	Cortex -M3
С	Discuss Selection Criteria of Sensors & Actuator	rs with example.

Q3. (20 M)	Solve any Two Questions out of Three	10 marks each
A	What is the importance of Design metrics? Which n embedded system? Support your answer with suitable	· · · · · · · · · · · · · · · · · · ·
В	Differentiate between Bluetooth & Zigbee communi	ication interfaces.
С	How is Task Scheduling done in embedd Algorithms.	ded system ? Explain Scheduling

Q4. (20 M)	Solve any Two Questions out of Three	10 marks each
A	What is Multitasking? Explain TCB, Task states	with neat diagram.
В	Design FSM & discuss Case study for Washing N	Machine Embedded Application.
C	Explain Free RTOS Task Management , Event &	Time management features .