

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Department of Electronics and Computer Science Syllabus (NEP Scheme) Sem-III and Sem-IV w.e.f. A.Y. 2024-25

Department of Electronics and Computer Science, NEP Scheme w.e.f. A.Y. 2024-25

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Semester III Teaching Scheme											
Course Code	Course Name		'eachi Schen ntact l	ng ne nours)	Credits Assigned						
		TH	PR	TUT	TH	PR	TUT	TOTAL			
NECPC31	Data Structures	3	2		3	1		4			
NECPC32	Digital System Design	3	2		3	1		4			
NECPC33	Operating System	3	2		3	1		4			
NECMM31	Microprocessor and Microcontroller	3	2		3	1		4			
NECEM31	Finance Management	2			2			2			
NECAE31	Professional Communication and Ethics II	1	2		1	1		2			
	Total Cre	dits						20			

Semester III Marks Scheme										
Course Code	Course Name	TH	MT	CA	TW	PR/OR	Total			
NECPC31	Data Structures	60	20	20	25	25	150			
NECPC32	Digital System Design	60	20	20	25	25	150			
NECPC33	Operating System	60	20	20	25	25	150			
NECMM31	Microprocessor and Microcontroller	60	20	20	25	25	150			
NECEM31	Finance Management	30	20				50			
NECAE31	Professional Communication and Ethics II				50		50			
	Total Ma	arks					700			

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

	Semester IV Teaching Scheme									
Course Type	Course Name	Teaching Scheme (Contact hours)			Credits Assigned					
		TH	PR	TUT	TH	PR	TUT	TOTAL		
NECPC41	Electronic Devices and Circuits	3	2		3	1		4		
NECPC42	Database Management System	3	2		3	1		4		
NECPC43	Discrete Structure and Automata Theory	2			2			2		
NECMM42	Embedded System and RTOS	3	2		3	1		4		
NOE401	Open Elective*	3		1	3		1	4		
NECEM42	Introduction to Innovation and Entrepreneurship for Engineers			2			2	2		
NECVEL41	Simulation Lab for Signal Processing		2	1		1	1	2		
NECFP41	Field Projects		2			2		2		
	Total Cr	edits						24		

Semester IV Marks Scheme										
Course Type	Course Name	ТН	МТ	CA	TW	PR/OR	TOTAL			
NECPC41	Electronic Devices and Circuits	60	20	20	25	25	150			
NECPC42	Database Management System	60	20	20	25	25	150			
NECPC43	Discrete Structure and Automata Theory	60	20	20			100			
NECMM42	Embedded System and RTOS	60	20	20	25	25	150			
NOE401	Open Elective	60	20	20			100			
NECEM42	Introduction to Innovation and Entrepreneurship for Engineers				25		25			
NECVEL41	Simulation Lab for Signal Processing				25	25	50			
NECFP41	Field Projects				25		25			
	Total Marks									

Department of Electronics and Computer Science, NEP Scheme w.e.f. A.Y. 2024-25

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science COURSE NAME: - DATA STRCTURES

Course	Course	Te (Te	aching Sch eaching Ho	Credits Assigned					
Code	Iname	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NECPC 31	Data Structures (Theory)	03			03			03	
NECPCL 31	Data Structures (Lab)		02			01		01	
Total Credits									

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Course	Course	Te (Te	aching Sch eaching Ho	eme urs)		Credits A	ssigned	
Code	name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC 31	Data Structures (Theory)	03			03			03

Course Code		Examination Scheme						
		Theory						
	Course Name	Internal Assessment		End	Term Work	Practical &	Total	
		Mid- Term Test	Continuous Assessment	Sem Exam		Ural		
NECPC 31	Data Structures (Theory)	20	20	60			100	

Course Prerequisite: Knowledge of one or more programming language e.g. C, C++. JAVA, Python and proficiency in any one of them.

Course Objectives:

- 1 To understand and demonstrate basic data structures (such as Arrays, linked list, stack, queue, binary tree, graph).
- 2 To implement various operations on data structures.
- 3 To study different sorting and searching techniques.
- 4 To choose efficient data structures and apply them to solve real world problems.

Course Outcomes:

After successful completion of the course students will be able to:

- 1 Understand various linear data structures.
- 2 Perform operations on linear data structures.
- 3 Comprehend various nonlinear data structures.
- 4 Implement various operations on nonlinear data structures.
- 5 Analyze appropriate sorting and searching techniques for a given problem.
- 6 Apply appropriate data structure and algorithms for solving real world problems.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

DATA STRUCTURE (THEORY)

Module	Contents	Hrs
1	Introduction to Data Structures	05
1.1	Introduction to Data Structures, Types of Data Structures - Linear and	
	Nonlinear, Operations on Data Structures, Concept of array, Static arrays vs	
	Dynamic Arrays.	
1.2	Arrays, Pointers and Strings: Introduction to Arrays, Definition, One	
	Dimensional Array and Multidimensional Arrays, Pointer, Pointer to	
	Structure, various Programs for Array and Pointer. Strings.	
	Introduction to Strings, Definition, Library Functions of Strings.	
2	Stack and Queues	06
2.1	Introduction, Basic Stack Operations, Representation of a Stack using Array,	
	Applications of Stack - Well form-ness of Parenthesis, Infix to Postfix	
	Conversion and Postfix Evaluation.	
2.2	Queue, Operations on Queue.	
3	Linked List	07
3.1	Introduction, Representation of Linked List, Linked List v/s Array, Types of	
	Linked List, Operations on Singly Linked List: Insertion, Deletion, reversal	
	of SLL, Print SLL. Implementation of Stack and Queue using Singly Linked	
	List.	
3.2	Representation of a Queue using array, Circular Queue, concept of priority	
	Queue, Applications of Qubly Linked List and Circular Linked List.	
4	Trees	07
4.1	Introduction, Tree Terminologies, Binary Tree, Types of Binary Tree,	
	Representation of Binary Trees.	
4.2	Binary Tree Traversals, Binary Search Tree Operations on Binary Search	
	Tree, Applications of Binary Tree – Expression Tree, Huffman Encoding.	
5	Graphs	06
5.1	Introduction, Graph Terminologies, Representation of graph (Adjacency	
	matrix and adjacency list).	
5.2	Graph Traversals – Depth First Search (DFS) and Breadth First Search (BFS),	
	Application – Topological Sorting.	
6	Introduction to Sorting and Searching	08
6.1	Introduction to Searching: Linear search, Binary search, Sorting: Internal VS.	
	External Sorting	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

6.2	Sorting Techniques: Bubble, Insertion, selection, Quick Sort, Merge Sort,						
	Complexity Analysis of Algorithm, Comparison of sorting Techniques based						
	on their complexity.						
6.3	Hashing Techniques, Different Hash functions, Collision & Collision						
	resolution techniques: Linear and Quadratic probing, Double hashing.						
	Total	39					

Textbool	ks:
1	Data Structures Using C, Aaron M Tenenbaum, YedidyahLangsam, Moshe J
	Augenstein, Pearson Education First Edition, 2019.
2	Introduction to Data Structure and its Applications Jean-Paul Tremblay, P.
	G.Sorenson, Second Edition, 2017.
3	Data Structures using C, Reema Thareja, Oxford,2 nd edition,2014.
4	C and Data structures, Prof. P.S.Deshpande, Prof. O.G.Kakde, Dreamtech Press.
5	Data Structures: A Pseudocode Approach with C, Richard F. Gilberg& Behrouz A.
	Forouzan, Second Edition, CENGAGE Learning, 2 nd edition.
Reference	e books:
1	Data Structure Using C, Balagurusamy, 4 th Edition,2022.
2	Data Structures using C and C++, Rajesh K Shukla, Wiley – India.
3	Algorithms Design and Analysis, Bhasin, OXFORD.
4	Data Structures Using C, ISRD Group, Second Edition, Tata McGraw-Hill.
5	Computer Algorithms by Ellis Horowitz and Sartaj Sahni, Universities Press.
6	Data Structures, Adapted by: GAV PAI, Schaum's Outlines.
Access to	o software and virtual labs:
1	NPTL: Data Structures and Algorithms
	https://archive.nptel.ac.in/courses/106/102/106102064/
2	NPTL: Programming, Data Structures and Algorithms
	https://archive.nptel.ac.in/courses/106/106/106106127/

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Internal	Internal Assessment:							
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment							
	of 20 marks.							
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.							
3	Duration of the midterm test shall be one hour.							

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Sen	End Semester Theory Examination:			
1	Question paper will be of 60 marks.			
2	Question paper will have a total of five questions.			
3	All questions have equal weightage and carry 20 marks each.			
4	Any three questions out of five needs to be solved.			

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

DATA STRUCTURE (LAB)

Course	Course	Te (Te	aching Sch eaching Ho	eme urs)	Credits Assigned			
Coue	Ivanie	Theory	Practical	Tutorial	Theory	Practical	Tut	Total
NECPCL 31	Data Structures Lab		02			01		01

			I	Examinatio	n Scheme		
			Theory				
Course Code	Course		nternal sessment	End	Term	Practical	TAL
	Ivaine	Mid- Term Test	Continuous Assessment	Sem Exam	Work	æ Oral	Totai
NECPCL 31	Data Structures Lab				25	25	50

Lab Prerequisite: Knowledge of one or more programming language e.g. C, C++. JAVA, Python and proficiency in any one of them.

Lab Objectives:

- 1 To implement basic data structures such as arrays, linked lists, stacks and queues.
- 2 To solve problem involving graphs, and trees.
- 3 To develop application using data structure algorithms.
- 4 To compute the complexity of various algorithms.

Lab Outcomes:

After successful completion of the lab course students will be able to:

- 1 To implement basic data structures such as arrays, linked lists, stacks and queues.
- 2 To solve problem involving graphs, and trees.
- 3 To develop application using data structure algorithms.
- 4 To compute the complexity of various algorithms.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Suggest	Suggested Experiments: Students are required to complete at least 10 experiments.				
Sr.No.	Name of the Experiments				
1	Implement Stack ADT using array.				
2	Convert an Infix expression to Postfix expression using stack ADT.				
3	Evaluate Postfix Expression using Stack ADT.				
4	Applications of Stack ADT.				
5	Implement Linear Queue ADT using array.				
6	Implement Circular Queue ADT using array.				
7	Implement Priority Queue ADT using array.				
8	Implement Singly Linked List ADT.				
9	Implement Circular Linked List ADT.				
10	Implement Doubly Linked List ADT.				
11	Implement Stack / Linear Queue ADT using Linked List.				
12	Implement Binary Search Tree ADT using Linked List.				
13	Implement Graph Traversal techniques:				
	a) Depth First Search b) Breadth First Search				
14	Applications of Binary Search Technique.				
15	Implementation of Topological sort.				

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term-W	ork:
1	Term work should consist of 10 experiments.
2	The final certification and acceptance of term work ensures satisfactory
	performance of laboratory work and minimum passing marks in term work.
3	Total 25 Marks
	(Experiments: 15-marks, Term work Assessment: 10-marks)

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - DIGITAL SYSTEM DESIGN

Course	Course	Te (Te	aching Sch eaching Ho	eme urs)		Credits Assigned		
Coue	Ivanie	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC 32	Digital System Design (Theory)	03			03			03
NECPCL 32	Digital System Design (Lab)		02			01		01
Total Credits						04		

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC 32	Digital System Design (Theory)	03			03			03

			ŀ	Examinati	on Scher	ne	
			Theory			Practical &	Total
Course Code	Course Name	Internal Assessment		End	Term Work		
		Mid- Term Test	Continuous Assessment	Sem Exam		Oral	
NECPC 32	Digital System Design (Theory)	20	20	60			100

Co	Course Prerequisite: Digital Electronics.				
Со	urse Objectives:				
1	To teach design and analysis of combinational logic circuits.				
2	To teach the elements of sequential logic design, analysis and design of sequential circuits.				
3	To train students in writing programs with Verilog hardware description languages for combinational circuit design.				
4	To train students in writing programs with Verilog hardware description languages for sequential circuit design.				
5	To explain and describe various logic families and FPGA.				
Co	urse Outcomes: After successful completion of the course students will be able to:				
1	Design Combinational logic circuits using Medium Scale Integration (MSI).				
2	Design counter circuits using MSI.				
3	Design Sequential logic circuits using flip flops.				
4	Apply Verilog Hardware Description Language to design Combinational logic circuits.				
5	Apply Verilog Hardware Description Language to design sequential logic circuits.				
6	Develop an understanding of TTL ,CMOS logic families and FPGA technology.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

DIGITAL SYSTEM DESIGN (THEORY)

Module	Contents	Hrs
1	Design of Combinational Logic Circuit	08
1.1	Arithmetic Circuits: Half adder, Full adder, Ripple carry adder, Carry Look	
	ahead adder, Half Subtractor, Full Subtractor, multiplexer, cascading of	
	Multiplexer, Demultiplexer, decoder, Comparator (Multiplexer and	
	Demultiplexer gate level up to 4:1).	
1.2	Designing using MSI devices: IC7483, IC74151, CD74HC147, CD4585.	
2	Elements of Sequential Logic Design	06
2.1	Sequential Logic: Conversion of flip flops, SR to JK, JK to T, JK to D, D to	
	T Flip Flop. Shift Register- Universal Shift Register.	
2.2	Counters: Asynchronous, Synchronous Counters, Up-Down Counters, Mod	
	Counters, Ring Counter, Twisted ring counter.	
3	Design of Sequential Logic Circuits	08
3.1	Sequential Logic Design: Mealy and Moore Machines, clocked synchronous	
	state machine analysis, state reduction techniques (inspection, partition and	
	implication chart method) and sequence detector, Clocked synchronous state	
	machine design.	
3.2	Sequential logic design practices: MSI 4-bit Binary counter (IC 7490, 7493),	
	MSI Shift register (IC 74194).	
4	Introduction to Verilog HDL	07
4.1	Basics: Introduction to Hardware Description Language and its core features,	
	synthesis in digital design, logic value system, data types, constants,	
	parameters, wires and registers. Verilog Constructs: Continuous & procedural	
	assignment statements, logical, arithmetic, relational, shift operator, always,	
	if, case, loop statements, Gate level modelling, Module instantiation	
	statements, Test bench.	
4.2	Modelling Examples: Combinational logic eg. Arithmetic circuits,	
	Multiplexer, Demultiplexer, decoder.	
5	Verilog HDL programming for Sequential circuits	05
5.1	Verilog HDL Programming for flip-flops, counters, Shift register.	
5.2	Verilog HDL programming for Moore, Mealy type FSMs, Sequence detector,	
	Serial adders.	
6	Logic Families and FPGA	05

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

6.1	Logic Families: Types of logic families (TTL and CMOS), characteristic		
	parameters (propagation delays, power dissipation, Noise Margin, Fan-out		
	and Fan-in).		
6.2	Zynq APSoC Architecture of ZYBO FPGA, FPGA design flow: Functional		
	simulation, Timing simulation, Logic synthesis, RTL, Functional verification.		
Total			

Textboo	ks:
1	M. Morris R. Mano and Michael D. Ciletti, Digital Design with an Introduction to the
	Verilog HDL, 7th Edition, Prentice Hall of India, India, 2020
2	J. Bhaskar, A Verilog HDL Primer, Third Edition, Star Galaxy Publishing, 2018.
Reference	ce books:
1	Digital Logic Applications and Design – John M. Yarbrough, Thomson Publications,
	2nd edition,2006.
2	M. Morris R. Mano and Michael D. Ciletti, Digital Design with an Introduction to the
	Verilog HDL, 7th Edition, Prentice Hall of India, India, 2020
3	Stephen Brown and ZvonkoVranesic, Fundamentals of digital logic design with
	Verilog design, McGraw Hill, 3rd Edition, 2013.
4	William I.Fletcher, "An Engineering Approach to Digital Design", PrenticeHall of
	India,3rd edition,2007.
5	Michael D. Ciletti, Advanced Digital Design with the Verilog HDL,2nd Edition,
	Pearson Pvt. Ltd, Noida, India, 2011.
6	Charles H. Roth, Jr., Fundamentals of Logic Design,7th Edition Reprint,
	Brooks/Cole, Pacific Grove, US,2014.
Access to	o software and virtual labs:
1	https://nptel.ac.in/courses/108105113
2	https://nptel.ac.in/courses/108103179 (For Verilog)
3	https://semiconductorclub.com/online-verilog-compiler/
Industry	articles and case studies:
1	https://www.allaboutcircuits.com/technical-articles/getting-started-with-the-verilog-
	hardware-description-language/
2	https://www.allaboutcircuits.com/technical-articles/fpga/
3	https://embeddedcomputing.com/technology/processing/semiconductor-ip/fpga-
	insights-and-trends-2023

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Internal Assessment:						
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment					
	of 20 marks.					
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.					
3	Duration of the midterm test shall be one hour.					

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Sen	End Semester Theory Examination:				
1	Question paper will be of 60 marks.				
2	Question paper will have a total of five questions.				
3	All questions have equal weightage and carry 20 marks each.				
4	Any three questions out of five needs to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

DIGITAL SYSTEM DESIGN (LAB)

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code Name		Theory	Practical	Tutorial	Theory	Practical	Tut	Total
NECPCL 32	Digital System Design Lab		02			01		01

	Course Name	Examination Scheme							
Course Code			Theory						
		Internal Assessment		End	Term	Practical	T ()		
		Mid- Term Test	Continuous Assessment	Sem Exam	Work	æ Oral	i otai		
NECPCL 32	Digital System Design Lab				25	25	50		

La	Lab Prerequisite: Digital Electronics.					
La	Lab Objectives:					
1	To design and implement combinational circuits.					
2	To design and implement sequential circuits.					
3	To implement combinational and sequential circuits using Verilog.					
4	To implement combinational /sequential circuits on FPGA.					
La	b Outcomes:					
Aft	ter successful completion of the lab course students will be able to:					
1	Design and implement combinational circuits using MSI.					
2	Design and implement sequential circuits using MSI.					
3	Develop Verilog code for combinational and sequential circuits					
4	Implement combinational and sequential circuits using FPGA.					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Suggest	ed Experiments: Students are required to complete at least 10 experiments.						
(Hardwa	(Hardware + Software based)						
Hardwa	are Based Experiments:						
Sr.No.	Name of the Experiments						
1	To implement BCD adder using binary adder IC 7483.						
2	To implement logic equations using Multiplexer IC 74151.						
3	To verify the comparator IC 7485.						
4	To perform Flip flop conversion JK to D, JK to T and D to T flip flop.						
5	To implement MOD N counter using IC 7490/7493.						
6	To implement universal shift register using IC 74194.						
Softwa	are Based Experiments:						
Sr.No.	Name of the Experiments						
1	To simulate basic logic gates using Verilog HDL.						
2	To design and simulate Full adder/full subtractor using Verilog HDL.						
3	To design and simulate Multiplexer/Demultiplexer using Verilog HDL.						
4	To design and simulate decoder using Verilog HDL.						
5	To design and simulate comparator using Verilog HDL.						
6	To simulate basic flip flops using Verilog HDL.						
7	To design and simulate 4-bit counter / up-down counter using Verilog HDL.						
8	To design and simulate Shift register using Verilog HDL.						

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term-W	Term-Work:						
1	Term work should consist of 10 experiments.						
2	The final certification and acceptance of term work ensures satisfactory						
	performance of laboratory work and minimum passing marks in term work.						
3	Total 25 Marks						
	(Experiments: 15-marks, Term work Assessment: 10-marks)						

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science COURSE NAME: - OPERATING SYSTEM

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Iname	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC 33	Operating System (Theory)	03			03			03
NECPCL 33	Operating System (Lab)		02			01		01
Total Credits						04		

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC 33	Operating System (Theory)	03			03			03

	Course Name	Examination Scheme						
			Theory					
Course Codo		Internal Assessment		End	Term	Practical	T - 4 - 1	
Coue		Mid- Term Test	Continuous Assessment	Sem Exam	Work	Oral	Total	
NECPC 33	Operating System (Theory)	20	20	60			100	

Co	urse Prerequisite: C Programming.
Co	urse Objectives:
1	To understand the major components of the Operating System and its functions.
2	To introduce the concept of a process and its management like transition, scheduling, etc.
3	To understand basic concepts related to Inter-process Communication (IPC) like mutual exclusion, deadlock, etc. and role of an Operating System in IPC.
4	To understand the concepts and implementation of memory management policies and virtual memory.
5	To understand functions of Operating Systems for storage management and device management.
6	To study the need and fundamentals of special-purpose operating system with the advent of new emerging technologies.
Co	urse Outcomes:
Aft	er successful completion of the course students will be able to:
1	Understand the basic concepts related to Operating Systems.
2	Comprehend Process management policies and scheduling of processes by CPU.
3	Understand various concepts involved in Process Coordination.
4	Understand the memory allocation and management functions of Operating Systems.
5	Understand the services provided by the Operating System for storage management.
6	Compare the functions of various special-purpose Operating Systems.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

OPERATING SYSTEM (THEORY)

Module	Contents			
1	Fundamentals of Operating System	04		
1.1	Introduction to Operating Systems; Operating System Structure-Layered,			
	Monolithic, Microkernel operating system; Functions of Operating Systems;			
	Operating System Services and Interface; System Calls and its Types; System			
	Programs; Operating System Structure.			
1.2	Self-learning Topics: Study of any three different OS. System calls with			
	examples for different OS.			
2	Process Management	07		
2.1	Basic Concepts of Process; Operation on Process; Process State Model and			
	Transition; Process Control Block; Context Switching;			
	Introduction to Threads; Types of Threads, Thread Models; Basic Concepts			
	of Scheduling; Types of Schedulers; Scheduling Criteria; Scheduling			
	Algorithms and performance evaluation of the scheduling.			
2.2	Self-learning Topics: Performance comparison of Scheduling Algorithms,			
	Selection of Scheduling Algorithms for different situations, Real-time			
	Scheduling.			
3	Process Coordination	09		
3.1	Basic Concepts of Inter-process Communication and Synchronization; Race			
	Condition; Critical Region and Problem; Peterson's Solution;			
	Synchronization Hardware and Semaphores; Monitors, Classic Problems of			
	Synchronization; Message Passing; Introduction to Deadlocks; System			
	Model, Deadlock Characterization; Deadlock Detection and Recovery;			
	Deadlock Prevention; Deadlock Avoidance.			
3.2	Self-learning Topics: Study a real time case study for Deadlock detection and			
	recovery.			
4	Memory Management	07		
4.1	Basic Concepts of Memory Management; Logical and Physical address map,			
	swapping; Memory Allocation: Contiguous memory allocation, Fixed and			
	variable partition. Internal and External fragmentation and compaction;			
	Paging; Structure of Page Table; Segmentation; Basic Concepts of Virtual			
	Memory; Demand Paging, Page Replacement Algorithms; Thrashing.			
4.2	Self-learning Topics: Memory Management for any one Operating System,			
	Implementation of Page Replacement Algorithms.			
5	Storage Management	07		

Department of Electronics and Computer Science, NEP Scheme w.e.f. A.Y. 2024-25

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Total							
6.2	Self-learning Topics: Case Study on any one Special-purpose Operating Systems.						
()	Special-purpose Operating Systems.						
	Multimedia operating System; Comparison between functions of various						
	Systems; Real-Time Operating System; Mobile Operating System;						
0.1	Operating System; Network Operating System; Cloud and IoT Operating						
6.1	Open-source and Proprietary Operating System: Fundamentals of Distributed						
6	Special-purpose Operating Systems	05					
	•						
	facility for different OS.						
5.2	Self-learning Topics: File System for Linux and Windows, Features of I/O						
	Structure; Introduction to I/O Systems.						
	Overview of Mass-Storage Structure; Disk Structure; Disk Scheduling; RAID						
	File-System Implementation; Allocation Methods; Free Space Management;						
5.1	Basic Concepts of File System; File Access Methods; Directory Structure;						

Textbooks: 1 A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts, 10th ed., Wiley, 2018. 2 W. Stallings, Operating Systems: Internal and Design Principles, 9th ed., Pearson, 2018. 3 A. Tanenbaum, Modern Operating Systems, Pearson, 4th ed., 2015. **Reference books:** N. Chauhan, Principles of Operating Systems, 1st ed., Oxford University Press, 2014. 2 A. Tanenbaum and A. Woodhull, Operating System Design and Implementation, 3rd ed., Pearson,2006. 3 R. Arpaci-Dusseau and A. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, CreateSpace Independent Publishing Platform, 1st ed., 2018. Access to software and virtual labs: 1 https://nptel.ac.in/courses/106105214 2 https://naim30.github.io/OS-virtual-lab/ Industry articles and case studies: https://www.ijcaonline.org/archives/volume176/number39/adekotujo-2020-ijca-1 920494.pdf 2 https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3820615_code1673756.pdf?abstractid =3820615&mirid=1 3 https://www.acs.eonerc.rwth-aachen.de/cms/E-ON-ERC-ACS/Studium/Lehrveranstaltungen/~lrhs/Spezial-Betriebssysteme/lidx/1/

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Internal Assessment:					
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment				
	of 20 marks.				
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.				
3	Duration of the midterm test shall be one hour.				

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Sem	End Semester Theory Examination:				
1	Question paper will be of 60 marks.				
2	Question paper will have a total of five questions.				
3	All questions have equal weightage and carry 20 marks each.				
4	Any three questions out of five needs to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

OPERATING SYSTEM (LAB)

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Ivaine	Theory	Practical	Tutorial	Theory	Practical	Tut	Total
NECPCL 33	Operating System Lab		02			01		01

	Course Name	Examination Scheme						
		Theory						
Course		Internal Assessment		End	Term	Practical	Tatal	
Code		Mid- Term Test	Continuous Assessment	Sem Exam	Work	a Oral	Total	
NECPCL 33	Operating System Lab				25	25	50	

La	b Prerequisite: C-Programming.					
La	Lab Objectives:					
1	To learn Unix general purpose commands and programming in the Unix editor					
	environment.					
2	To understand file system management and user management commands in Unix.					
3	To understand process management and memory management commands in Unix.					
4	To learn basic shell scripting.					
5	To understand different process scheduling algorithms.					
6	6 To understand different memory management algorithms.					
La	b Outcomes:					
Aft	er successful completion of the lab course students will be able to:					
1	Identify the Unix general purpose commands.					
2	Apply Unix commands for system administrative tasks such as file system management					
	and user management.					
3	Execute Unix commands for system administrative tasks such as process management and					
	memory management.					
4	Demonstrate basic shell scripts for different applications.					
5	Analyze different process scheduling algorithms.					
6	Analyze different memory management algorithms.					

Department of Electronics and Computer Science, NEP Scheme w.e.f. A.Y. 2024-25

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Suggested Experiments: Students are required to complete at least 10 experiments.							
Sr.No.	Name of the Experiments						
1	a) Execution of Unix General Purpose Utility Commands like echo, clear, exit, date,						
	time, uptime, cal, cat, tty, man, which, history, id, pwd, whoami, ping, ifconfig, pr, lp,						
	lpr, lpstat, lpq, lprm, cancel, mail, etc.						
	b) Working with Editor Vi/other editor.						
2	Execution of File System Management Commands like ls, cd, pwd, cat, mkdir, rmdir,						
	rm, cp, mv, chmod, wc, piping and redirection, grep, tr, echo, sort, head, tail, diff,						
	comm, less, more, file, type, wc, split, cmp, tar, find, vim, gzip, bzip2, unzip, locate,						
	etc.						
3	Execution of User Management Commands like who, whoami, su, sudo, login, logout,						
	exit, passwd, useradd/adduser, usermod, userdel, groupadd, groupmod, groupdel,						
	gpasswd, chown, chage, chgrp, chfn, etc.						
4	Execution of Process Management Commands like ps, pstree, nice, kill, pkill, killall,						
5	XKIII, 1g, 0g, pgrep, remice, etc.						
5	du vmstat demidecode sar pagegize etc						
6	Write a shall script to perform arithmetic operations						
0	• Write a shell script to perform antimietic operations. Write a shell script to calculate simple interast and Compound Interast						
	• while a shell script to calculate simple interest and compound interest calculation						
	• Write a shall script to determine largest among three integer numbers						
	 Write a shell script to determine if a given year is a leap year or not 						
	 Write a shell script to determine Fabrenheit to Contigrade Conversion 						
	 Write a shell script to determine Area & Circumforance of Circle 						
	• Write a shell script to determine Area & Circumference of Circle						
	• Write a shell script to search whether an element is present in the list of hot.						
	Write a shell script to compare two strings.						
	Write a Shell script for Employee Pay calculation						
	• White a shell script to calculate Grade.						
	• while a shell script to implement a menu-driven calculator using a case statement.						
	Write a shell script to perform operations on directory like: display name of current						
	directory; display list of directory contents; create another directory, write contents						
	on that and copy it to a suitable location in your home directory; etc						
7	• Write a Shell script for a Menu Driven program to check if entered number is						
	• Even or Odd 2.Prime 3.Palindrome 4.Armstrong						
	• Write a shell script to search whether an element is present in the list or not.						
	• Write a shell script to compare two strings.						
	• Write a shell script to read and check if the directory / file exists or not, if not						
	make the directory / file.						
	• Write a shell script to perform operations on directory like: display name of						
	current directory; display list of directory contents; create another directory,						

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

	write contents on that and copy it to a suitable location in your home directory;
	etc.
8	Execute the following scripts using grep / sed commands:
	• Write a script using grep command to find the number of words character, words and lines in a file.
	• Write a script using egrep command to display a list of specific types of files in the directory.
	• Write a script using sed command to replace all occurrences of a particular word in a given file.
	• Write a script using sed command to print duplicate lines in input.
9	Write a program to demonstrate any two CPU scheduling algorithms like FCFS, SJF,
	SRT, Round Robin, priority (preemptive or non preemptive) etc.
10	Write a program to implement dynamic partitioning placement algorithms i.e Best Fit,
	First-Fit, Worst-Fit etc.
11	Write a program to implement process synchronization using semaphore.
12	Implementing Various page replacement policies: FIFO, Optimal, LRU

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term-W	Term-Work:				
1	Term work should consist of 10 experiments.				
2	The final certification and acceptance of term work ensures satisfactory				
	performance of laboratory work and minimum passing marks in term work.				
3	Total 25 Marks				
	(Experiments: 15-marks, Term work Assessment: 10-marks)				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - MICROPROCESSOR AND MICROCONTROLLER

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Coue		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECMM 31	Microprocessor and Microcontroller (Theory)	03			03			03
NECMML 31	Microprocessor and Microcontroller (Lab)		02			01		01
Total Credits								04

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECMM 31	Microprocessor and Microcontroller (Theory)	03			03			03

	Course Name	Examination Scheme								
			Theory							
Course		Internal Assessment		End	Term	Practical & Oral	T (]			
Code		Mid- Term Test	Continuous Assessment	Sem Work Exam	I otal					
NECMM 31	Microproces sor and Microcontrol ler (Theory)	20	20	60			100			

Co	urse Prerequisite: Digital Electronics.
Co	urse Objectives:
1	To teach the concepts and basic architecture of a Microprocessor and Microcontroller.
2	To explain Assembly language programs for Microprocessors and Microcontrollers for
	various applications.
3	To discuss the importance of different peripheral devices and their interfacing to 8086 and
	8051.
4	To build Microprocessor and Microcontroller based systems.
Co	urse Outcomes:
Aft	er successful completion of the course students will be able to:
1	Discuss about 16-bit Microprocessor Architectures.
2	Apply Assembly language programming skills for Microprocessors.
3	Design implement Microprocessor based systems.
4	Compare 16-bit Microprocessor and 8-bit microcontroller architectures.
5	Apply Assembly and C language programming skills for Microcontrollers.
6	Design I/O peripherals with Microcontroller systems.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

MICROPROCESSOR AND MICROCONTROLLER (THEORY)

Module	Contents	Hrs
1	The 8086 Microprocessor	06
1.1	Introduction of 8085 microprocessor.	
1.2	8086 Architecture	
1.3	Memory Segmentation and Memory Banking	
1.4	8086 pin description	
1.5	Interrupts and Interrupt service routines, Dedicated interrupts, Software	
	interrupts	
2	8086 Programming	05
2.1	Addressing modes	
2.2	Instruction Set and Assembler Directives	
3	8086 Interfacing –Part I	06
3.1	Generating the 8086 System Clock and Reset Signals using 8284 clock	
	generators	
3.2	8086 Minimum and Maximum Mode CPU Modules	
3.3	Memory interfacing	
4	The 8051 Microcontroller	04
4.1	Differences between a Microprocessor and Microcontroller	
4.2	Architecture of 8051	
4.3	Memory Organization of the 8051	
5	8051 Programming	09
5.1	Addressing modes	
5.2	Instruction set	
5.3	Assembly language programming.	
5.4	C Programming	
6	8051 Interfacing	09
6.1	I/O port programming	
6.2	Programming 8051 Timers	
6.3	Serial Port Programming	
6.4	Interrupts Programming	
6.5	IO Interfacing -LCD & Keypad, ADC, DAC, Stepper and DC Motors	
6.6	Introduction to 8051 variants Atmega 8, Nuvoton MS51	
	Total	39

Department of Electronics and Computer Science, NEP Scheme w.e.f. A.Y. 2024-25

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Т	extbooks:
1	8086/8088 family: Design Programming and Interfacing: By John Uffenbeck (Pearson
	Education),3rd edition,2002.
2	Microprocessor and Interfacing: By Douglas Hall (TMH Publication), 3rd edition, 2017.
3	The 8051 Microcontroller and Embedded Systems Using Assembly and C: By M. A. Mazidi,
	J. C. Mazidi, Rolin D. McKinlay, Pearson Education, 2nd edition, 2007.
R	eference books:
1	Microcomputer Systems: 8086/8088 family Architecture, Programming and Design: By Liu
	& Gibson (PHI Publication),2nd edition,2004.
2	The 8051 Microcontroller: By Kenneth J. Ayala, Cengage Learning India Pvt. Ltd, 3 rd
	edition.
3	The INTEL Microprocessors, Architecture, Programming and Interfacing: By Barry
	B. Brey (Pearson Publishers, 8th Edition).
4	Microcontrollers: Architecture, Programming, Interfacing and System Design: By
	RajKamal, Pearson Education, 2005.
A	ccess to software and virtual labs:
1	https://archive.nptel.ac.in/courses/108/105/108105102/
2	https://archive.nptel.ac.in/courses/108/103/108103157/
3	http://www.kitektechnologies.com/images/prod/mp5.pdf
In	dustry articles and case studies :
1	https://www.tutorialspoint.com/microprocessor/microprocessor_8086_overview.htm
2	https://www.keil.com/dd/chips/all/8051.htm
3	https://www.keil.com/dd/chips/all/8051.htm

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Internal	Internal Assessment:					
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment					
	of 20 marks.					
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.					
3	Duration of the midterm test shall be one hour.					

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Sen	End Semester Theory Examination:					
1	Question paper will be of 60 marks.					
2	Question paper will have a total of five questions.					
3	All questions have equal weightage and carry 20 marks each.					
4	Any three questions out of five needs to be solved.					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

MICROPROCESSOR AND MICROCONTROLLER (LAB)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tut	Total
NECMML 31	Microprocessor and Microcontroller Lab		02			01		01

	Course Name	Examination Scheme							
		Theory							
Course		Internal		End	Term	Practical	Total		
Code		Assessment							
Coue		Mid- Term Test	Continuous Assessment	Sem Exam	Work	Oral	Totai		
NECMML 31	Microprocess or and Microcontroll er Lab				25	25	50		

La	Lab Prerequisite: C-Programming, Digital Electronics.						
La	b Objectives:						
1	To write Assembly language programs for Microprocessors and Microcontrollers for						
	various applications.						
2	To know the importance of different peripheral devices and their interfacing to 8086 and						
	8051.						
La	b Outcomes:						
Aft	er successful completion of the lab course students will be able to:						
1	To develop programming skills for Microprocessors and Microcontrollers.						
2	To interface various devices in Microprocessor and Microcontroller systems.						

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Suggest	Suggested Experiments: Students are required to complete at least 10 experiments.					
Sr.No.	Name of the Experiments					
1	Arithmetic Operations, Logical operations (using 8086)					
2	Data Transfer, Arithmetic, Logical operations using 8051					
3	Use of Subroutine in 8051 Programming					
4	IO Port Programming using 8051					
5	Interfacing of led, switch with 8051					
6	Serial port programming of 8051					
7	Applications of Timers of 8051					
8	LCD Interfacing (using 8051)					
9	Sensor interfacing using an ADC (using 8051)					
10	Generation of different waveforms using DAC (using 8051)					
11	Interfacing of Keypad with 8051					
12	Interfacing of DC, Stepper, servo motors with 8051.					

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term-W	Term-Work:					
1	Term work should consist of 10 experiments.					
2	The final certification and acceptance of term work ensures satisfactory					
	performance of laboratory work and minimum passing marks in term work.					
3	Total 25 Marks					
	(Experiments: 15-marks, Term work Assessment: 10-marks)					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - FINANCE MANAGEMENT

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECEM 31	Finance Management (Theory)	02			02			02
Total Credits							02	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECEM 31	Finance Management (Theory)	02			02			02

	Course Name	Examination Scheme							
		Theory							
Course		Internal Assessment		End	Term	Practical			
Code		Mid- Term Test	Continuous Assessment	Sem Exam	Work	& Oral	Total		
NECEM 31	Finance Management (Theory)	20		30			50		

Co	urse Objectives:
1	To know about the Indian financial system, instruments, and market.
2	To understand the relationship between risk, return, and time value of Money.
3	To understand the financial statements and ratio analysis.
4	To understand personal taxation.
Co	urse Outcomes:
Aft	er successful completion of the course students will be able to:
1	Explain the Indian financial system, instruments, and market.
2	Determine the risk, return, and time value of Money with respect to financial decisions.
3	Decide investment decisions for projects with the help of financial ratios.
4	Determine the components involved in taxation.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

FINANCE MANAGMENT (THEORY)

Module	Contents	Hrs
1	Indian Financial System	08
1.1	Characteristics, Components and Functions of Financial System. Financial	
	Instruments: Meaning, Characteristics and Classification of Basic Financial	
	Instruments — Equity Shares, Preference Shares, Bonds-Debentures,	
	Certificates of Deposit, Treasury Bills, Trade credit.	
1.2	Financial Markets: Meaning, Characteristics and Classification of Financial	
	Markets — Capital Market, Money Market and Foreign Currency Market.	
1.3	Financial Institutions: Meaning, Characteristics and Classification of	
	Financial Institutions: Commercial Banks, Investment-Merchant Banks and	
	Stock Exchanges.	
2	Financial Risk and Returns	06
2.1	Concepts of Returns and Risks: Measurement of Historical Returns and	
	Expected Returns of a Single Security and a Two-security Portfolio.	
2.2	Measurement of Historical Risk and Expected Risk of a Single Security and a	
	Two-security Portfolio.	
2.3	Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and	
	Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity	
	Due; Continuous Compounding and Continuous Discounting.	
3	Corporate Finance	06
3.1	Overview of Financial Statements: Balance Sheet, Profit and Loss Account,	
	and Cash Flow Statement.	
3.2	Financial Ratio Analysis: Purpose of Financial Ratio Analysis. Liquidity	
	Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure	
	Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	
4	Introduction To Taxation	06
4.1	Introduction and Objectives, Assessment Year, Previous Year, Person	
4.2	Assesses, Assessment, Income	
4.3	Gross Total Income, Total Income, Scheme of charging income tax	
	Total	26

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Reference	ee books:
1	Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham
	and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
2	Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins;
	Publishers: McGraw Hill Education, New Delhi.
3	Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill
	Education, New Delhi.
4	Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand
	(G/L) & Company Limited, New Delhi.

Internal	Assessment:
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment
	of 20 marks.
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.
3	Duration of the midterm test shall be one hour.

End Sen	End Semester Theory Examination:				
1	Question paper will be of 30 marks.				
2	Question paper will have a total of five questions.				
3	All questions have equal weightage and carry 10 marks each.				
4	Any three questions out of five needs to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - PROFESSIONAL COMMUNICATION AND ETHICS-II

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Coue		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECAE31	Professional Communication and Ethics-II (Theory)	01	02		01	01		02
Total Credits								02

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECAE31	Professional Communication and Ethics-II (Theory)	01			01			01

		Examination Scheme						
			Theory					
		Internal Assessment						
Course Code	Course Name	Mid - Ter m Test	Continu ous Assessm ent	End Sem Exam	Term Work	Practical & Oral	Total	
NECAE31	Professional Communication and Ethics-II (Theory)				50		50	

Cou	rse Prerequisite: Professional Communication and Ethics-I.
Cou	rse Objectives:
1	To discern and develop an effective style of writing important technical/business documents.
2	To investigate possible resources and plan a successful job campaign.
3	To understand the dynamics of professional communication in the form of group
	discussions, meetings, etc. required for career enhancement.
4	To develop creative and impactful presentation skills.
5	To analyze personal traits, interests, values, aptitudes and skills.
6	To understand the importance of integrity and develop a personal code of ethics.
Cou	rse Outcomes:
Afte	r successful completion of the course students will be able to:
1	Plan and prepare effective business/ technical documents which will in turn provide solid
	foundation for their future managerial roles.
2	Strategize their personal and professional skills to build a professional image and meet
	the demands of the industry.
3	Emerge successful in group discussions, meetings and result-oriented agreeable solutions
	in group communication situations.
4	Deliver persuasive and professional presentations.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

5	Develop creative thinking and interpersonal skills required for effective professional communication.
6	Apply codes of ethical conduct, personal integrity and norms of organizational behavior.

PROFESSIONAL COMMUNICATION AND ETHICS-II (THEORY)

Module	Contents	Hrs
1	Advanced Technical Writing: Project/Problem Based Learning (PBL)	06
1.1	Definition, Purpose & Types of Proposals	
	 Solicited & Unsolicited Proposals 	
	• Types (Short and Long proposals)	
1.2	Parts of a Proposal	
	• Elements	
	• Scope and Limitations	
	Conclusion	
1.3	Objectives of Report Writing	
	• Information	
	Decision Making	
	• Analysis	
	Recommendations	
1.4	Parts of a Long Formal Report:	
	• Prefatory Parts (Front Matter)	
	• Report Proper (Main Body)	
	• Appended Parts (Back Matter)	
1.5	Language and Style of Reports	
	• Tense, Person & Voice of Reports	
	 Numbering Style of Chapters, Sections, Figures, Tables 	
	 Referencing Styles in APA & MLA Format 	
	 Proofreading through Plagiarism Checkers 	
1.6	Technical Paper Writing:	
	• Parts of a Technical Paper	
	Language and Formatting	
	Writing an abstract	
	Referencing in IEEE Format	
1.7	Presenting data-figures, diagrams and labelling	
	Graphic Organizers for Summaries	
	Radial Diagrams like Mind Maps	
	Flow Charts	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

	Cyclic Diagrams	
	Linear Diagrams like Timelines	
	Pyramids	
	Venn Diagrams	
2	Employment Skills	06
2.1	Cover Letter & Resume	
	• Parts and Content of a Cover Letter	
	• Difference between Bio-data, Resume & CV	
	• Essential Parts of a Resume	
	 Types of Resumes (Chronological, Functional & 	
	Combination)	
2.2	Statement of Purpose	
	• Importance of SOP	
• •	Tips for Writing an Effective SOP	_
2.3	Group Discussions	
	• Purpose of a GD	
	• Parameters of Evaluating a GD	
	• Types of GDs (Normal, Case-based & Role Plays)	
2.4	GD Etiquettes	_
2.4	Personal Interviews	
	• Planning and Preparation	
	• Types of Questions	
	• I ypes of Interviews (Structured, Stress, Benavioral, Problem	
	• Solving & Case-based)	
	 Modes of Interviews: Face-to-face (One-to one and Panel) 	
	Telephonic Virtual	
3	Business Meetings	02
3.1	Documentation	
	Notice	
	• Agenda	
	Minutes	
3.2	Conducting Business Meetings:	
	• Types of Meetings	
	Roles and Responsibilities of Chairperson, Secretary and	
	Members	
	Meeting Etiquette	
-		
4	Technical/ Business Presentations	02

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

4.1		
4.1	Effective Presentation Strategies	
	Defining Purpose	
	Analyzing Audience, Location and Event	
	Gathering, Selecting and Arranging Material	
	• Structuring a Presentation	
	Making Effective Slides	
	Types of Presentations Aids	
	Closing a Presentation	
	Platform skills	
4.2	Group Presentations	
	Sharing Responsibility in a Team	
	Building contents and visuals together	
	Transition Phases	
5	Interpersonal Skills	05
5.1	Interpersonal Skills	
	Emotional Intelligence	
	Leadership & Motivation	
	Conflict Management & Negotiation	
	Time Management	
	• Assertiveness	
	Decision Making	
6	Corporate Ethics	02
6.1	Intellectual Property Rights	
	Copyrights	
	• Trademarks	
	• Patents	
	Industrial Designs	
6.2	Case Studies	
	Cases related to Business/ Corporate Ethics	
7	Professional Writing Skills	03
7.1	Developing Professional Writing Skills	
	• Effective introduction with emphasis on general statement,	
	opposing statement and thesis statement	
	• Critical response to a text with special reference to purpose,	
	evaluation of the content, theme and style of a text	
	• Organization of ideas, sentence construction and word	
	choice, grammar and usage	
	• Explanation and support of ideas (special reference to	
	writing paragraphs opening statement, body, closing	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

	statement, linkers)			
7.2	Creative Writing			
	Narrative essays			
	Content writing			
	• Blog			
	Total			

R	eference books:
1	Lesiker and Petit (1997), "Report Writing for Business", McGraw-Hill Education10th
	edition.
2	Butterfield, J. (2017). Verbal communication: Soft skills for a digital workplace. Boston,
	MA: Cengage Learning.
3	Bovée, C. L., & Thill, J. V. (2017). Business communication today, 14th Edition, NJ:
	Pearson.
4	Robbins, S. P., Judge, T. A., & Campbell, T. T. (2017). Organizational Behaviour.
	Harlow, England: Pearson.
5	Fred Luthans. (2010). Organizational Behavior, McGraw Hill Education, 12th edition.
6	B N Ghosh (2017), Managing Soft Skills for Personality Development, Tata McGraw Hill
	Education.
7	R. C. Sharma, Krishna Mohan, Virendra Singh Nirban (2020). Business Correspondence
	and Report Writing, 6th Edition, McGraw Hill
8	Julie-Ann Amos (2004). Handling Tough Job Interviews Jaico Publishing House
R	eferences: Web Links
1	http://networketiquette.net/
2	https://public.wsu.edu/~brians/errors/
3	http://users3.ev1.net/~pamthompson/body_language.htm
4	http://www.albion.com/netiquette/corerules.html
5	http://www.bbc.co.uk/worldservice/learningenglish/radio/specials/1535_questionanswer/pa
	ge15.shtml
6	http://www.colostate.edu/Depts/Speech/rccs/theory44.html
7	http://www.dailywritingtips.com

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Term Work:

Term work will be for 50-Marks as given below

Sr No	Headings	Marks
А	Assignments	10 Marks
В	Mini Project with Presentation	10 Marks
С	Media Studies	10 Marks
D	Book Report and Presentation	10 Marks
E	Group Discussion	10 Marks
	Total	50 Marks

A) Assignments: List of assignments are as given below. The assignments have to be discussed in the group and approved by faculty. Each student in the group will have to write the assignments individually (10 Marks): -

Sr No	List of Assignments
1	Resume, Cover Letter and SOP
2	Summarizing data figures into paragraphs (Module 1.7)
3	Notice, Agenda and Minutes of Meeting
4	Two case studies on Business Ethics
5	Assignment on (Teamwork, Leadership, Decision Making
	and Problem Solving)

B) Report on presentation: A detail typed report has to be prepared of minimum 25 pages and maximum 30 pages. The format of the report has to be discussed and approved by faculty

C) A final Group Discussion Round will be conducted and every student must participate in the group discussion

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Semester IV Teaching Scheme								
Course Type	Course Name	Teaching Scheme (Contact hours)			Credits Assigned			
		TH	PR	TUT	TH	PR	TUT	TOTAL
NECPC41	Electronic Devices and Circuits	3	2		3	1		4
NECPC42	Database Management System	3	2		3 1		4	
NECPC43	CPC43 Discrete Structure and Automata Theory				2			2
NECMM42	Embedded System and RTOS	3	2		3	1		4
NOE401	C401 Open Elective*				4			4
NECEM45	Introduction to Innovation and Entrepreneurship for Engineers			2			2	2
NECVEL46	Simulation Lab for Signal Processing		2	1		1	1	2
NECFP47	Field Projects		2			2		2
	Total Cro	edits						24

Semester IV Marks Scheme									
Course Type	Course Name	ТН	MT	CA	TW	PR/OR	TOTAL		
NECPC41	Electronic Devices and Circuits	60	20	20	25	25	150		
NECPC42	NECPC42 Database Management System		20	20	25	25	150		
NECPC43	Discrete Structure and Automata Theory	60	20	20			100		
NECMM44	Embedded System and RTOS	60	20	20	25	25	150		
NOE401	Open Elective	60	20	20			100		
NECEM41	Introduction to Innovation and Entrepreneurship for Engineers				25		25		
NECVEL41	Simulation Lab for Signal Processing				25	25	50		
NECFP41 Field Projects					25		25		
	Total Marks						750		

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

***Open Electives**

NOE401	Design Thinking
NOE402	Green IT
NOE403	Database Management System
NOE404	Quantitative Analysis
NOE405	Web Development

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - ELECTRONIC DEVICES AND CIRCUITS

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Course Code NECPC41 NECPCL41	Iname	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
	Electronics							
	Devices	03						
NECPC41	and				03			03
	Circuits							
	(Theory)							
	Electronics		02			01		01
	Devices							
NECPCL41	and							
	Circuits							
	(Lab)							
Total Credits							04	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Course	Course	Te (T	aching Sch eaching Ho	Credits Assigned				
Code	Iname	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC41	Electronics Devices and Circuits (Theory)	03			03			03

	Course Name	Examination Scheme								
			Theory							
Course Code		Internal Assessment		End	Term Work	Practical &	Total			
		Mid- Term Test	Continuous Assessment	Sem Exam		Oral				
NECPC41	Electronics Devices and Circuits (Theory)	20	20	60			100			

Course Prerequisite: Basic Electrical and Electronics Engineering.

1	To deliver the knowledge and enhance comprehension capabilities of students through
	understanding of electronic devices (Diode, BJT).
2	To analyze amplifiers using BJT and MOSFET.
3	To perform AC analysis, low and high frequency response of an amplifier.
4	To teach fundamental principles of differential amplifiers and Operational amplifiers.
5	To teach applications by using opamp IC and special purpose IC.
Co	urse Outcomes:
Aft	er successful completion of the course students will be able to:
1	Analyze diode applications and DC analysis of BJT.
2	Evaluate DC analysis of MOSFET.
3	Evaluate AC analysis and frequency response of an amplifier.
4	Analyze Differential amplifier and operational amplifier.
5	Design linear and nonlinear applications of operational amplifier.
6	Design circuits that perform desired applications using special purpose ICs.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

ELECTRONIC DEVICES AND CIRCUITS (THEORY)

Module	c Contents I						
1	PN junction diode applications and Introduction to BJT	06					
1.1	Application of P-N junction diode as clippers & clampers (different types of						
	configurations with input-output waveforms & transfer characteristics).						
1.2	BJT construction & structure, symbol, operation, V-I characteristics of						
	common emitter configuration.						
	DC Circuit Analysis: DC load line, Q-point & region of operation, concept of						
	biasing, bias stability, analysis of CE amplifier using voltage divider biasing						
	circuit. (numerical examples to be included).						
2	Metal Oxide Semiconductor Field Effect Transistor (MOSFET)	06					
2.1	MOSFET: Types, Construction, operation, symbol, V-I & transfer characteristics of the E-MOSFET						
2.2	DC Circuit Analysis: DC load line O-point & region of operation common						
	MOSFET configurations of common source (CS), analysis of biasing circuits						
	(only CS configuration using voltage divider biasing) (numerical examples						
	only for E-MOSFET).						
3	AC Analysis and Frequency Response of Amplifier	08					
3.1	AC analysis of MOSFET: Small signal (AC) model of MOSFET & its						
	equivalent circuit, small signal analysis of Common source (CS) configuration						
	MOSFET amplifier only (Numerical examples included).						
3.2	Low frequency response & analysis, effect of the coupling, bypass & load						
	capacitances on single stage MOSFET amplifier for common source (CS)						
	configuration (mathematical analysis & numerical examples included).						
3.3	High frequency response & analysis, effect of parasitic capacitances in						
	MOSFET amplifier, high frequency equivalent circuit of MOSFET, Miller's						
	theorem, effect of Miller's capacitance, unity gain bandwidth (mathematical						
	analysis & numerical examples included).						
4	Introduction to Differential amplifier and Operational Amplifier	06					
4.1	MOSFET differential amplifier, types, DC characteristics, Transfer						
	characteristics						
4.2	The ideal operational amplifier (op-amp), internal block diagram of op-amp,						
	characteristics of op-amp, ideal & practical op-amp parameters / specifications						
	(no detailed description or any analysis), mathematical model of op-amp,						
	Virtual ground and virtual short circuit concept, IC 741 pin diagram &						
	description.						
5	Applications of Operational Amplifier	07					
5.1	Inverting amplifier, Non-inverting amplifier, Summing amplifier, Difference						
	amplifier, Ideal and practical integrator, ideal and practical differentiator.						

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

	Total	39			
	voltage low current application)				
6.2	Voltage regulator IC 78XX, IC 723 (Low voltage low current and High				
	& monostable multivibrator with mathematical analysis & numerical examples.				
6.1	IC 555 timer internal block diagram & pin configuration, operation in astable				
6	Special Purpose Integrated Circuits	06			
	detector (ZCD) & Schmitt Trigger				
5.2	Comparators: Inverting comparator, non-inverting comparator, zero crossing				

Textbool	ks:
1	Donald A. Neamen, "Electronic Circuit Analysis and Design", TATA McGraw Hill,
	3rd Edition,2006.
2	David A. Bell, "Electronic Devices and Circuits", Oxford, 7th Edition, 2009.
3	Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson,
	revised 4th Edition,2021.
Reference	ce books:
1	Boylestead," Electronic Devices and Circuit Theory", Pearson Education,12th
	Edition,2021.
2	Adel S. Sedra, Kenneth C. Smith and Arun N Chandorkar, "Microelectronic Circuits
	Theory and Applications", International Version, OXFORD International Students
	Edition, 7th Edition, 2017.
3	Muhammad H. Rashid, "Microelectronics Circuits Analysis and Design",
	Cengage,3rd edition,2016.
4	S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits", Tata McGraw
	Hill,5th edition,2022.
5	Sergio Franco, "Design with operational amplifiers & analog integrated circuits",
	Tata McGraw Hill, 4th edition, 2016.
6	D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age
	International Publishers, 5th Edition,2018.
Access to	o software and virtual labs:
1	LTspice software - https://www.analog.com/en/resources/design-tools-and-
	calculators/ltspice-simulator.html
2	https://www.pspice.com/
3	Virtual lab-http://vlabs.iitkgp.ac.in/be/
4	https://onlinecourses.nptel.ac.in/noc24_ee99/preview

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Industry	articles and case studies:
1	https://www.researchgate.net/topic/Electronic-Circuit-Design/publications
2	https://circuitdigest.com/tech-articles
3	https://www.azom.com/article.aspx?ArticleID=22700
4	https://www.researchgate.net/topic/Operational-Amplifiers/publications
5	https://www.electronicsforu.com/
Any othe	er (Access to AI tools / Data driven insights (if applicable) or any other):
1	https://www.collegelib.com/artificial-intelligence-in-electronics/
2	https://www.snapmagic.com/

Internal	Internal Assessment:					
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment					
	of 20 marks.					
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.					
3	Duration of the midterm test shall be one hour.					

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Sem	End Semester Theory Examination:				
1	Question paper will be of 60 marks.				
2	Question paper will have a total of five questions.				
3	All questions have equal weightage and carry 20 marks each.				
4	Any three questions out of five needs to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

ELECTRONIC DEVICES AND CIRCUITS (LAB)

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Iname	Theory	Practical	Tutorial	Theory	Practical	Tut	Total
NECPCL41	Electronic Devices and Circuits Lab		02			01		01

	Course	Examination Scheme							
		Theory							
Course		Internal			T	Practical &	Total		
Code	Name	Assessment		End	Term				
		Mid- Term Test	Continuous Assessment	Sem Exam	Work	Oral	100001		
NECPCL 41	Electronic Devices and Circuits Lab				25	25	50		

Lab Prerequisite: Basic Electrical and Electronics Engineering. Lab Objectives: To deliver a hands-on approach for studying electronic devices. 1 To comprehend characteristics of electronic devices; thereby understanding their behavior. 2 To analyze and calculate inherent parameters of electronic devices through an experimental 3 approach. 4 To introduce modern software simulation tools for modelling & simulation of electronic devices. Lab Outcomes: After successful completion of the lab course students will be able to: Demonstrate an understanding of the semiconductor devices. 1 Perform DC analysis of CE and CS amplifier. 2 3 Analyze the frequency response of single stage amplifiers. 4 Design linear and Nonlinear applications using Op-amp IC 741.

5 Design circuits using special purpose IC 555 / IC 723.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Suggest	ted Experiments: Students are required to complete at least 10 experiments.
At least	50% experiments should be Simulation based.
Sr.No.	Name of the Experiments
1	To perform Clippers and Clampers.
2	To perform DC analysis of CE amplifier in voltage divider configuration.
3	To perform DC analysis of CS MOSFET amplifier in voltage divider configuration.
4	To perform AC analysis of CE amplifiers (Calculate Av, Ai, Ri, Ro).
5	To analyze the frequency response of CS amplifier.
6	To design Inverting and Noninverting amplifier using IC 741.
7	To design of linear application using op amp IC 741 (eg. adder/ subtractor, Integrator,
	Differentiator etc)
8	To design nonlinear applications of opamp IC 741 (eg. Comparator, zero crossing
	detector, Schmitt trigger etc)
9	To design Monostable/Astable multivibrator using IC 555
10	To design voltage regulator using IC 723
List of	Simulation Experiments
1	SPICE simulation of and implementation of Clipper and Clamper circuits.
2	SPICE simulation of and implementation for BJT characteristics.
3	SPICE simulation of MOSFET characteristics.
4	SPICE simulation of AC analysis of CS amplifier.
5	SPICE simulation of frequency response of amplifier.
6	SPICE simulation of Linear and Nonlinear applications using IC 741.
7	SPICE simulation of Voltage regulator using IC 723.

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term-W	ork:
1	Term work should consist of 10 experiments.
2	The final certification and acceptance of term work ensures satisfactory
	performance of laboratory work and minimum passing marks in term work.
3	Total 25 Marks
	(Experiments: 15-marks, Term work Assessment: 10-marks)

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - DATABASE MANAGEMENT SYSTEM

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Coue	Ivame	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC42	Database Management System (Theory)	03			03			03
NECPCL42	Database Management System (Lab)		02			01		01
Total Credits								04

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC42	Database Management System (Theory)	03			03			03

Course Code			E	xaminat	ion Scheme			
		Theory						
	Course Name	Internal Assessment		End	Term Work	Practical &	Total	
		Mid- Term Test	Continuous Assessment	Sem Exam		Oral		
NECPC42	Database Management System (Theory)	20	20	60			100	

Co	Course Prerequisite: Data Structures					
Co	Course Objectives:					
1	Develop entity relationship data model and its mapping to relational model.					
2	Learn relational algebra and formulate SQL queries.					
3	Apply normalization techniques to normalize the database.					
4	Understand concepts of transaction, concurrency control and recovery techniques.					
Co	Course Outcomes:					
Aft	er successful completion of the course students will be able to:					
1	Identify the need of database, and define the problem statement for real life applications.					
2	Create relational model for real life applications.					
3	Construct relational model and write relational algebra queries.					
4	4 Formulate query using SQL for efficient retrieval of data.					
5	Apply the concept of normalization to relational database design.					
6	Describe the concepts of transaction, concurrency and recovery.					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

DATABASE MANAGEMENT SYSTEM (THEORY)

Module	Contents	
1	Introduction to Database Concepts	03
1.1	Introduction, Characteristics of databases.	
1.2	File systems v/s Database systems.	
1.3	Data abstraction and Data Independence.	
1.4	DBMS system architecture.	
1.5	Database Administrator.	
2	Entity–Relationship Data Model	07
2.1	The Entity-Relationship (ER) Model.	
2.2	Entity types: Weak and strong entity sets, Entity sets, Types of Attributes,	
	Keys.	
2.3	Relationship Constraints: Cardinality and Participation.	
2.4	Extended Entity-Relationship (EER) Model: Generalization, Specialization	
	and Aggregation.	
3	Relational Model and Relational Algebra	06
3.1	Introduction to the Relational Model.	
3.2	Relational schema and concept of keys.	
3.3	Mapping the ER and EER Model to the Relational Model.	
3.4	Relational Algebra – operators, Relational Algebra Queries.	
4	Structured Query Language (SQL)	06
4.1	Overview of SQL	
4.2	Data Definition Commands	
4.3	Integrity constraints: Key constraints, Domain Constraints, Referential	
4 4	Integrity, Check constraints	
4.4	Data Manipulation commands, Data Control commands	
4.5	Set and string operations, aggregate function - group by, having	
4.0	Views in SQL, joins, Nested and complex queries, Triggers	
4.7	MYSQL Functions	
_		07
5	Relational–Database Design	07
5.1	Pittalis in Kelational-Database designs	
5.2	Concept of normalization	
5.3	Function Dependencies	
5.4	First Normal Form, 2NF, 3NF, BCNF.	
		4.0
6	Transactions Management and Concurrency and Recovery	10

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

	Total	39
6.8	Deadlock handling	
6.7	Recovery System: Log based recovery	
6.6	Concurrency Control: Lock-based, Timestamp-based protocols	
6.5	Serializability: Conflict and View	
6.4	Concurrent Executions	
6.3	Transaction Control Commands	
6.2	ACID properties	
6.1	Transaction Concept, Transaction states	

Textbooks: Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill 1 Elmasri and Navathe, Fundamentals of Database Systems, 7th Edition, Pearson 2 education,2015. Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH 3 3rd edition,2003. **Reference books:** Peter Rob and Carlos Coronel, Database Systems Design, Implementation and 1 Management^I, Thomson Learning, 13th edition, 2020. 2 Dr.P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press,1st edition,2006. 3 G. K. Gupta, Database Management Systems, McGraw Hill., 2012. Access to software and virtual labs: https://nptel.ac.in/courses/106105175 1 http://vlabs.iitkgp.ac.in/se/4/simulation/ 2 Industry articles and case studies : https://ieeexplore.ieee.org/document/8251067. 1 https://www.researchgate.net/publication/4349094/ 2 Automatic database normalization and primary key generation.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Internal	Internal Assessment:					
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment					
	of 20 marks.					
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.					
3	Duration of the midterm test shall be one hour.					

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Sen	End Semester Theory Examination:				
1	Question paper will be of 60 marks.				
2	Question paper will have a total of five questions.				
3	All questions have equal weightage and carry 20 marks each.				
4	Any three questions out of five needs to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

DATABASE MANAGEMENT SYSTEM (LAB)

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Coue	Ivame	Theory	Practical	Tutorial	Theory	Practical	Tut	Total
NECPCL42	Database Management System Lab		02			01		01

		Examination Scheme						
Course Code		Theory						
	Course	I As	nternal sessment	End	Term Work	Practical & Oral	Total	
	Iname	Mid- Term Test	Continuous Assessment	Sem Exam				
NECPCL 42	Database Management System Lab				25	25	50	

La	b Prerequisite: Data Structures
La	b Objectives:
1	Develop entity relationship data model and its mapping to relational model.
2	Learn relational algebra and formulate SQL queries.
3	Apply normalization techniques to normalize the database.
4	Understand concepts of transaction, concurrency control and recovery techniques.
La	b Outcomes:
Aft	er successful completion of the lab course students will be able to:
1	Design ER /EER diagram and convert to relational model for the real-world application.
2	Apply DDL, DML, DCL and TCL commands.
3	Create simple and complex queries.
4	Apply PL/SQL Constructs.
5	Demonstrate the concept of concurrent transactions execution and frontend-backend
	connectivity.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Suggest	ted Experiments: Students are required to complete at least 10 experiments.
(Hardwa	are + Simulation Based)
Sr.No.	Name of the Experiments
1	Identify the case study and detail statement of problem. Design an Entity-
	Relationship (ER) / Extended Entity-Relationship (EER) Model.
2	Mapping ER/EER to Relational schema model.
3	Create a database using Data Definition Language (DDL) and apply integrity
	constraints for the specified System
4	Apply DML Commands for the specified system
5	Perform Simple queries, string manipulation operations and aggregate functions.
6	Implement various Join operations.
7	Perform Nested and Complex queries.
8	Perform DCL and TCL commands.
9	Implement procedure and functions
10	Implementation of Views and Triggers.
11	Demonstrate Database connectivity.
12	Implementation and demonstration of Transaction and Concurrency control
	techniques using locks.

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term-W	ork:
1	Term work should consist of 10 experiments.
2	The final certification and acceptance of term work ensures satisfactory
	performance of laboratory work and minimum passing marks in term work.
3	Total 25 Marks
	(Experiments: 15-marks, Term work Assessment: 10-marks)

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - DISCRETE STRUCTURE AND AUTOMATA THEORY

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC43	Discrete Structure and Automata Theory (Theory)	02			02			02
Total Credits								02

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECPC43	Discrete Structure and Automata Theory (Theory)	02			02			02

		Examination Scheme							
Course Code	Course Name	Theory							
		Internal Assessment		End	Term Work	Practical &	Total		
		Mid- Term Test	Continuous Assessment	Sem Exam	VV OT K	Oral			
NECPC43	Discrete Structure and Automata Theory (Theory)	20	20	60			100		

Co	Course Prerequisite: Engineering Mathematics – I & II.				
Co	urse Objectives:				
1	To cultivate clear thinking for Creative Problem Solving.				
2	To train students to understand and construct Mathematical Proofs.				
3	To introduce the notions of Sets, Relations, Functions, Graphs and their applications.				
4	To build concepts of theoretical design of Basic machines, Deterministic and Non-				
	Deterministic Finite state machines and Pushdown Machines.				
5	To gain the conceptual understanding of fundamentals of Grammars.				
6	To prepare students with the mathematical aspects in other courses such as Formal				
	Specification, Verification, Artificial Intelligence etc				
Co	urse Outcomes:				
Aft	er successful completion of the course students will be able to:				
1	Apply the notion of mathematical thinking, mathematical proofs in problem solving.				
2	Analyze logically.				
3	Perform operations with Sets, Relations, Functions, Graphs and their applications.				
4	Design Deterministic Finite Automata (DFA) and Non-deterministic Finite Automata				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

	(NFA) and Pushdown Automata with understanding of power and limitations.
5	Design Context Free Grammar and perform the operations like simplification and normal
	forms.
6	Apply Discrete Structures and Automata Theory concepts into solving real world
	computing problems in the domain of Formal Specification, Verification, Artificial
	Intelligence etc.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

DISCRETE STRUCTURE AND AUTOMATA THEORY

Module	Contents	Hrs
1	Relations	04
1.1	Relations- Definition, Properties of Relations.	
1.2	Types of binary relations (Equivalence and partial ordered relations).	
1.3	Closures, Poset, Hasse diagram and Lattice.	
1.4	Pigeonhole Principle, Extended Pigeonhole Principle.	
2	Functions	04
2.1	Functions-Definition.	
2.2	Types of Functions (Injective, Surjective and Bijective).	
2.3	Identity and Inverse Functions.	
3	Graph Theory	03
3.1	Graphs.	
3.2	Euler paths and circuits.	
3.3	Hamiltonian Paths and circuits .	
4	Finite Automata	05
4.1	Introduction of Automata and its applications	
4.2	Deterministic Finite Automata (DFA) and Nondeterministic Finite Automata	
	(NFA): Definitions, transition diagrams and Language recognizers, NFA to	
	DFA Conversion.	
4.3	Eliminating epsilon-transitions from NFA.	
4.4	FSM with output: Moore and Mealy machines.	
5	Regular Expression (RE) and Regular Grammar (RG)	05
5.1	Regular Grammar and Regular Expression (RE): Definition, Equivalence and	
	Conversion from RE to RG and RG to RE.	
5.2	Equivalence of RE and FA, Converting RE to FA and FA to RE.	
6	Context Free Grammar (CFG) and Push Down Automata (PDA)	05
6.1	Grammars: Chomsky hierarchy, CFG- Definition, Sentential forms, Leftmost	
	and Rightmost derivations.	
6.2	Context Free languages (CFL): Parsing and Ambiguity's: Simplification and	
	Applications.	
6.3	Normal Forms: Chomsky Normal Form	
	Total	26

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Textbool	ks:							
1	BernadKolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman,							
	"DiscreteMathematical Structures", Pearson Education.							
2	C.L.Liu, "Elements of Discrete Mathematics", Second edition 1985, McGraw-							
	HillBook Company, Reprinted 2000.							
3	John E. Hopcroft, Rajeev Motwani, Jeffery D. Ullman, "Introduction to Automata							
	Theory, Languages and Computation ", Pearson Education, 3rd edition, 2006.							
4	Vivek Kulkarni, "Theory of Computation", Oxford University Press, India.							
Reference	ce books:							
1	K.H.Rosen, "Discrete Mathematics and applications", Tata McGraw Hill publishing							
	Company,7th edition,2011.							
2	Y N Singh, "Discrete Mathematical Structures", Wiley-India.							
3	J .L.Mott, A.Kandel, T.P .Baker, Discrete Mathematics for Computer Scientists and							
	Mathematicians, second edition 1986, Prentice Hall of India							
4	J. P. Trembley, R. Manohar "Discrete Mathematical Structures with Applications to							
	Computer Science", Tata McGraw-Hill.							
5	Seymour Lipschutz, Marc Lars Lipson," Discrete Mathematics" Schaum's Outline,							
	McGraw Hill Education, 3rd edition, 2009.							
6	Daniel I. A. Cohen," Introduction to Computer Theory", Wiley Publication,2nd							
	edition,2006.							
7	Michael Sipser, "Theory of Computation", Cengage learning, 3rd edition, 2012.							
8	J. C. Martin, "Introduction to Languages and the Theory of Computation", Tata							
	McGraw Hill,4th edition,2010.							
Access to	o software and virtual labs:							
1	Discrete structures : <u>https://www.mathily.org/dm-rw.html</u>							
2	Discrete structures: https://micsjournal.springeropen.com/							
3	Automata theory							
	:https://www.sciencedirect.com/science/article/pii/S0950705117300655							

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Internal	Internal Assessment:						
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment						
	of 20 marks.						
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.						
3	Duration of the midterm test shall be one hour.						

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Sen	End Semester Theory Examination:				
1	Question paper will be of 60 marks.				
2	Question paper will have a total of five questions.				
3	All questions have equal weightage and carry 20 marks each.				
4	Any three questions out of five needs to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - EMBEDDED SYSTEM AND RTOS

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Ivanie	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECMM42	Embedded System and RTOS (Theory)	03			03			03
NECMML42	Embedded System and RTOS (Lab)		02			01		01
Total Credits								04

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECMM42	Embedded System and RTOS (Theory)	03			03			03

	Course Name	Examination Scheme					
		Theory					
Course		Internal Assessment		End	Term	Practical	Tatal
Code		Mid- Term Test	Continuous Assessment	Sem Exam	Work	æ Oral	Total
NECMM42	Embedded System and RTOS (Theory)	20	20	60		1	100

Course Prerequisite: Microprocessors & Microcontrollers, C programming.		
Course Objectives:		
1	To study concepts involved in Embedded Hardware and Software for System realization.	
2	To learn the concepts of modern microcontroller cores like the ARM-Cortex.	
3	To learn Real-time programming to design time-constrained embedded systems.	
Course Outcomes:		
After successful completion of the course students will be able to:		
1	Identify various characteristic features and applications of embedded systems.	
2	Identify hardware for embedded system implementation.	
3	Evaluate various communication protocols for embedded system implementation.	
4	Compare GPOS and RTOS.	
5	Apply various tools for testing and debugging embedded systems.	
6	Design a system for different requirements based on life-cycle for the embedded system, keeping oneself aware of ethics and environmental issues.	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

EMBEDDED SYSTEM AND RTOS (THEORY)

Module	Contents	Hrs
1	Introduction to Embedded Systems	
1.1	Definition, Characteristics, Classification, Applications.	
1.2	Design metrics of Embedded system.	
2	Embedded Hardware Elements	11
2.1	Features of Embedded cores- µC, ASIC, ASSP, SoC, FPGA, RISC and CISC	
	cores. Types of memories.	
	Communication Interfaces: Comparative study of Serial communication	
	Interfaces -RS-232, I2C, CAN, Bluetooth (Frame formats of above protocols	
	are not expected)	
2.2	ARM Cortex-M3 Features, Architecture, Programmer's model, Special	
	Registers, Operating Modes and States, MPU, Memory map, Low Power	
	modes and NVIC.	
3	Embedded Software	10
3.1	Embedded Programming in C: ALP and High-level language programming,	
	Real-time Operating system: GPOS vs RTOS, Need of RTOS in Embedded	
	system software. Task, Task states, Multi-tasking, Task scheduling	
3.2	Inter-process communication: Message queues, Mailbox, Event timers. Task	
	synchronization: Need, Issues- Deadlock, Race condition, live Lock,	
	Solutions using Mutex, Semaphores. Shared Data problem, Priority inversion	
		07
4	Introduction to Free RTOS	05
4.1	Free RIOS Task Management features, Resource Management features, Task	
	Synchronization reatures, Event Management reatures, interrupt Management	
	leatures, Thie Management leatures.	
5	Testing and Debugging Methodology	03
51	Testing & Debugging: Hardware testing tools Emulator	05
5.2	Software Testing tools Simulator Debugger White-Box and Black-Box	
5.2	testing	
	tosting.	
6	System Integration (Case Studies)	06
6.1	Embedded Product Design Life-Cycle (EDLC)- Waterfall Model	
	Hardware-Software Co-design	
6.2	Case studies for Automatic Chocolate Vending Machine, Washing Machine.	
	Smart Card, highlighting	
	i) Specification requirements (choice of components),	
	ii) Hardware architecture , iii) Software architecture	
	Total	39

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Textbooks:		
1	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, New Delhi, 2009.	
2	SriramIyer, Pankaj Gupta," Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company ltd., 2003.	
Ref	erence Books:	
1	Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 2015, Edition 3rd.	
2	Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.	
3	www.freertos.org	
4	Dr. K.V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.	
5	Frank Vahid, Tony Givargis, "Embedded System Design – A Unified Hardware/Software Introduction", John Wiley & Sons Inc., 2002.	
6	Jonathan W. Valvano, "Embedded Microcomputer Systems – Real Time Interfacing", Publisher - Cengage Learning,3 rd , edition,2012.	
7	Andrew Sloss, Domnic Symes, Chris Wright, "ARM System Developers Guide Designing and Optimising System Software", Elsevier, 2004	
Acces	ss to software and virtual labs:	
1	vlabs.iitkgp.ernet.in	
2	swayam - IIT kharagpur NPTEL 2024- Introduction to Embedded System design, nptel.ac.in.	
Industry articles and case studies:		
1	nxp.com - Embedded papers	
2	www.engpaper.com	
3	https://ieeexplore.ieee.org	
Any other (Access to AI tools / Data driven insights (if applicable) or any other):		
1	www.digi.com real life 10 examples.	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Internal Assessment:		
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment	
	of 20 marks.	
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.	
3	Duration of the midterm test shall be one hour.	

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Semester Theory Examination:		
1	Question paper will be of 60 marks.	
2	Question paper will have a total of five questions.	
3	All questions have equal weightage and carry 20 marks each.	
4	Any three questions out of five needs to be solved.	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

EMBEDDED SYSTEM AND RTOS (LAB)

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	name	Theory	Practical	Tutorial	Theory	Practical	Tut	Total
NECMML 42	Embedded System and RTOS Lab		02			01		01

			I	Examinatio	n Scheme		
	Course Name		Theory				
Course		Internal Assessment		End	Term	Practical	
Coue		Mid- Term Test	Continuous Assessment	Sem Exam	Work	æ Oral	i otal
NECMML 42	Embedded System and RTOS Lab				25	25	50

Lab Prerequisite: Microprocessors & Microcontrollers, C programming.

Lab Objectives:

1 To design and write efficient code for single-tasking and multi-tasking embedded systems.

Lab Outcomes:

After successful completion of the lab course students will be able to:

- 1 Interface various sensors and actuators to embedded cores.
- 2 Write code using RTOS for multi-tasking Embedded systems.
- 3 Design applications using different embedded cores.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Suggest	Suggested Experiments: Students are required to complete at least 08 experiments.				
Sr.No.	Name of the Experiments				
1	Interfacing of LEDs /switches with any embedded core. (8051/ARM/STM32, etc				
2	Interfacing of LCD/ Seven segment display with any embedded core.				
	(8051/ARM/STM32, etc)				
3	Interfacing of BUZZER with any embedded core.				
4	Interfacing of a DC motor (speed and Direction control) with any embedded core.				
	(8051/ARM/STM32,etc)				
5	Write a Program to Create Multiple Tasks and understand the Multitasking capabilities				
	of RTOS using (FreeRTOS).				
6	Write a Program to illustrate the use of Binary and Counting Semaphore for Task				
	Synchronization.				
7	Build a Multitasking Real-Time Applications using the above IPC Mechanisms.				
8	Write a Program to illustrate the Queue Management Features.				

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term-W	Term-Work:				
1	Term work should consist of 10 experiments.				
2	The final certification and acceptance of term work ensures satisfactory				
	performance of laboratory work and minimum passing marks in term work.				
3	Total 25 Marks				
	(Experiments: 15-marks, Term work Assessment: 10-marks)				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - DESIGN THINKING

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Coue	Ivanie	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE401	Design Thinking (Theory)	03		01	03		01	04
Total Credits						04		

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE401	Design Thinking (Theory)	03		01	03		01	04

	urse ode Course Name	Examination Scheme						
		Theory						
Course Code		Internal Assessment		End	Term Work	Practical &	Total	
		Mid- Term Test	Continuous Assessment	Sem Exam		Oral		
NOE401	Design Thinking (Theory)	20	20	60			100	

Co	urse Objectives:
1	To cultivate a thorough grasp of Design Thinking's definition, principles, and practical
	applications.
2	To achieve proficiency in Design Thinking methodologies and processes, encompassing
	the 5-stage approach and various implementation strategies.
3	To learn diverse methods and tools during the Empathize and Design phases of product
	development within the framework of Design Thinking.
4	To learn to apply design thinking tools and methods in ideation stage.
5	To comprehend different prototype methods and learn the importance of testing.
6	To apply Design Thinking principles through case studies and real-world scenarios,
	fostering practical understanding and proficiency in problem-solving and innovation.
Co	urse Outcomes:
Aft	er successful completion of the course students will be able to:
1	Develop a comprehensive understanding of Design Thinking's definition, principles, and
	applications.
2	Acquire proficiency in Design Thinking methodologies and processes, encompassing the
	5-stage approach and diverse implementation strategies.
3	Learn various methods/tools for Empathize and Design phases in product development
	through Design Thinking.
4	Tackle idea generation challenges by employing techniques such as brainstorming, mind
	mapping, and ideation tools, prioritizing visualization and empathy prior to generating

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

	ideas.
5	Understanding various prototype types and methods, implementing focused experiments,
	exploration maps, and minimum viable products.
6	Applying interdisciplinary collaboration, ethics, culture, global perspectives, and
	technology integration in real-world scenarios.

DESIGN THINKING (THEORY)

Module	Contents	Hrs
1	Introduction to Design Thinking	05
1.1	Design Thinking Background: Definition, Importance, Origin, Design Vs	
	Design Thinking, Problem Solving and Need, Principles of Design Thinking,	
	Business Uses, Variety within the Design Thinking Discipline	
	Design Thinking Approach: Empathy, Ethnography, Divergent Thinking,	
	Visual Thinking, Assumption Testing and Prototyping	
1.2	Activities for Tutorials: Identify an Opportunity and Scope of the Project	
	Explore the possibilities and prepare a design brief	
2	Design thinking process and methodology	08
2.1	Design Thinking Resources: Organization, People, Place, Material	
	Principles of Design Thinking	
	Design Thinking Processes	
	Design Thinking Methodology: The 5 Stages of the Design Thinking	
	Process- Empathize, define (the problem), Ideate, Prototype, and Test.	
2.2	Activities for Tutorials: Identify design thinking process and methodology	
	which will be useful for your case study and also identify the important	
	applicable principles.	
3	Empathize and Design	07
3.1	Methods and Tools for Empathize and Design phases: Ask 5 Why (5W+H	
	Questions), Stakeholder and Empathy Map Peer Observation, Trend Analysis,	
	Data Gathering methods, Observation, Focus Graph, Interview, Q&A, Design	
	Thinking Application, Design Thinking Applied to product development.	
3.2	Activities for Tutorials: Apply the methods of empathizing and Define Phases	
	Finalize the problem statement.	
4	Design Thinking in Practice	07

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

4.1	Visualisation and Ideation: Challenges in idea generation, Visualize,	
	Empathize, and Ideate method, Importance of visualizing and empathizing	
	before ideating. Ideation Tools: How Might We? (HMW), Storyboard, Mind	
	mapping, Brainstorming, Affinity diagram.	
4.2	Activities for Tutorials: Apply the methods of Ideate Phase: Generate Lots of	
	Ideas.	
5	Prototyping and Testing	08
5.1	Prototyping: Types of Prototypes, Methods of prototyping, focused	
	experiments, exploration map, minimum viable product, Testing prototypes	
	with users	
5.2	Activities for Tutorials: Apply the Methods of the Prototype Phase: Create	
	prototypes for selected ideas. Collect feedback, iterate and improve the ideas.	
6	Case Studies/Real World Application	04
6.1	Case Studies and Real-World Applications: Important considerations:	
	Cross Disciplinary Collaborations, Ethical consideration, cultural sensitivity	
	and global perspective, technology integration.	
6.2	Activities for Tutorials Find out any one-use case considering the above	
	discussed factors that have impacted the real-world business/society.	
	Total	39

Τ	extbooks:
1	Idris Mootee, —Design Thinking for Strategic Innovation: What They Can't Teach You at
	Business or Design Schooll, Wiley, 2017. (e-book)
	https://www.aitskadapa.ac.in/e-books/CSE/DESIGN%20THINKING/Design%20Thinking
	%20for%20Strategic%20Innovation_%20What%20They%20Can_t%20Teach%20You%20
	at%20Business%20or%20Design%20School%20(%20PDFDrive%20).pdf
2	Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and
	Inspires Innovation".(e-book)
	http://hozekf.oerp.ir/sites/hozekf.oerp.ir/files/kar_fanavari/manabe%20book/Thinking/Chan
	ge%20by%20Design_%20How%20Design%20Thinking%20Transforms%20Organizations
	%20and%20Inspires%20Innovation%20.pdf
3	Christian Müller-Roterberg, "Handbook of Design Thinking", Kindle Direct Publishing
	ISBN:978-1790435371, November 2018.
	(https://www.researchgate.net/publication/329310644_Handbook_of_Design_Thinking).
R	eference books:
1	Gavin Ambrose, Paul Harris, "Basics Design - 8: Design Thinking", illustrated, reprint,
	AVAPublishing, 2010.
2	Christine Charyton, Creative Engineering Design Assessment, Springer.

Department of Electronics and Computer Science, NEP Scheme w.e.f. A.Y. 2024-25

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

3	Warren K Wake Wake, Design Paradigms: A Sourcebook for Creative Visualization,
	JohnWiley & Sons.
0	nline Resources:
1	https://www.gasq.org/files/content/gasq/downloads/certification/Design%20Thin
	king/DesignThinking_Syllabus_0-6-3_EN.pdf
2	https://www.cuelogic.com/blog/core-principles-of-design-thinking
3	https://www.uxuiopen.com/trial/ux_fundamentals/design_process/
4	https://digitalleadership.com/blog/design-thinking/
5	https://www.interaction-design.org/literature/topics/design-thinking
6	https://www.pvpsiddhartha.ac.in/dep_it/lecture%20notes/FDLD_21/UNIT-1.pdf
7	https://aim.gov.in/pdf/Mentor-DesignThinking.pdf
Ir	dustry articles and case studies:
1	MJV Tecnologia ltda, "Design Thinking business innovation" e-book
2	https://theaccidentaldesignthinker.com/2017/09/16/40-design-thinking-success-stories/
3	https://voltagecontrol.com/blog/8-great-design-thinking-examples/
4	https://online.hbs.edu/blog/post/design-thinking-examples
5	https://www.theknowledgeacademy.com/blog/design-thinking-case-study/
Α	ny other (Access to AI tools / Data driven insights (if applicable) or any other):
1	User Research and Sentiment Analysis Tools:CrystalKnows, MonkeyLearn, Clarabridge
2	User Interviews and Surveys:Affectiva, Surveysparrow
3	Data Analysis Tools: Tableau, IBM Watson Analytics
4	Insight Extraction: Sift
5	Brainstorming and Idea Generation:Miro, Ideaflip, Writeseer
6	Prototyping Tools: Figma, Sketch2Code, Uizard
7	User Testing and Feedback:UserTesting, Lookback,Optimal Workshop
8	Automated Documentation and Note-Taking:Otter.ai,Notion

9 Collaboration Tools:Slack, Microsoft Teams

Internal	Internal Assessment:				
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment				
	of 20 marks.				
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.				
3	Duration of the midterm test shall be one hour.				
Continuous Assessment:					
Continuous Assessment is of 20 marks. The rubrics for assessment will be considered on					
approval	by the subject teachers. The rubrics can be any 2 or max 4 of the following:				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Semester Theory Examination:			
1	Question paper will be of 60 marks.		
2	Question paper will have a total of five questions.		
3	All questions have equal weightage and carry 20 marks each.		
4	Any three questions out of five needs to be solved.		

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - GREEN IT

Course	Course	Te (Te	aching Sch eaching Ho	eme urs)		Credits As	ssigned	
Code	name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE402	Green IT (Theory)	03		01	03		01	04
Total Credits							04	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE402	Green IT (Theory)	03		01	03		01	04

		Examination Scheme					
	Course Name	Theory					
Course Code		Internal Assessment		End	Term Work	Practical &	Total
		Mid- Term Test	Continuous Assessment	Sem Exam		Ural	
NOE402	Green IT (Theory)	20	20	60			100

Co	urse Prerequisite: Environmental Studies			
Co	Course Objectives:			
1	To understand what Green IT is and How it can help improve environmental			
	Sustainability.			
2	To understand the principles and practices of Green IT.			
3	To understand how Green IT is adopted or deployed in enterprises.			
4	To understand how data centres, cloud computing, storage systems, software and			
	networks can be made greener.			
5	To measure the Maturity of a Sustainable ICT world.			
6	To implement the concept of Green IT in Information Assurance in Communication and			
	Social media and all other commercial fields.			
Co	Course Outcomes:			
Aft	er successful completion of the course students will be able to:			
1	Describe awareness among stakeholders and promote green agenda and green initiatives in			
	their working environments leading to green movement.			
2	Identify IT Infrastructure Management and Green Data Centre Metrics for software			
	development.			
3	Recognize Objectives of Green Network Protocols for Data communication.			
4	Use Green IT Strategies and metrics for ICT development.			
5	Illustrate various green IT services and its roles.			
6	Use new career opportunities available in the IT profession, audits and others with special			
	skills such as energy efficiency, ethical IT assets disposal, carbon footprint estimation,			
	reporting and development of green products, applications and services.			

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

GREEN IT (THEORY)

Module	Contents	Hrs
1	Introduction: Environmental Impacts of IT, Holistic Approach to Greening	07
	IT, Green IT Standards and Eco-Labeling, Enterprise Green IT Strategy	
	Hardware: Life Cycle of a Device or Hardware, Reuse, Recycle and Dispose	
	Software: Introduction, Energy-Saving Software Techniques.	
	Self-learning Topics: Evaluating and Measuring Software Impact to	
	Platform Power.	
2	Sustainable Software development and data centres: Sustainable Software,	07
	Software Sustainability Attributes, Software Sustainability Metrics Data	
	Centers and Associated Energy Challenges, Data Centre IT Infrastructure,	
	Data Centre Facility Infrastructure: Implications for Energy Efficiency, Green	
	Data Centre Metrics.	
	Self-learning Topics: Sustainable Software: A Case Study, Data Centre	
	Management Strategies: A Case Study.	
-		0.6
3	Data storage and communication: Storage Media Power Characteristics,	06
	Eenergy Management Techniques for Hard Disks Objectives of Green	
	Network Protocols, Green Network Protocols and Standards.	
	Self-learning Topics: System-Level Energy Management.	
4	Laferna diana matana ana ita dana andara andariana Anana diana Cara	07
4	Information systems, green it strategy and metrics : Approaching Green IT Strataging, Pusinger Drivers of Green IT Stratagy Multilevel Systemphie	07
	Information Systematic History Models Droduct Level Information	
	Information, Sustainability Hierarchy Models, Floduct Level Information, Individual Level Information, Eurotional Level Information, Massuring the	
	Maturity of Systemable ICT: A Canability Maturity Framework for SICT	
	Defining the Scope and Goal Capability Maturity Levels	
	Solf loarning Tonics: Business Dimensions for Green IT Transformation	
	Sen-learning Topics. Dusiness Dimensions for Green IT Transformation.	
5	Green IT services and roles: Factors Driving the Development of	06
5	Sustainable IT Sustainable IT Services (SITS) SITS Strategic Framework	00
	Organizational and Enterprise Greening. Information Systems in Greening	
	Enterprises. Greening the Enterprise: IT Usage and Hardware.	
	Self-learning Topics: Inter-organizational Enterprise Activities and Green	
	Issues, Enablers and Making the Case for IT and the Green Enterprise.	
6	Managing and regulating green IT: Strategizing Green Initiatives,	06
	Implementation of Green IT, Communication and Social Media The	
	Regulatory Environment and IT Manufacturers, Non regulatory Government	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Initiatives, Industry Associations and Standards Bodies, Green Building Standards, Social Movements and Greenpeace	
Self-learning Topics: Information Assurance, Green Data Centers, Case study : Managing Green IT	
Total	39

Textboo	ks:
1	San Murugesan, G. R. Gangadharan, Harnessing Green IT, WILEY 1st Edition-2013.
2	Mohammad Dastbaz Colin Pattinson Babak Akhgar, Green Information Technology
	A Sustainable Approach, Elsevier 2015.
3	Reinhold, Carol Baroudi, and Jeffrey HillGreen IT for Dummies, Wiley 2009.
Reference	ce books:
1	Mark O'Neil, Green IT for Sustainable Business Practice: An ISEB Foundation
	Guide,BCS.
2	Jae H. Kim, Myung J. Lee Green IT: Technologies and Applications, Springer, ISBN:
	978-3-642-22178-1
3	Elizabeth Rogers, Thomas M. Kostigen The Green Book: The Everyday Guide to
	Saving the Planet One Simple Step at a Time, Springer
Access to	o software and virtual labs:
1	https://greentheweb.com/tools/
2	https://apiumhub.com/tech-blog-barcelona/green-software-tools-metrics/
3	https://climatecalculator.net/
4	https://greenit.ee/en/calculator/
5	https://natnavi.com/carbon-footprint-credit-calculator
Industry	v articles and case studies:
1	https://cekh.ccreee.org/cekh_resources/virtual-labs-green-energy-energy-identify-
	and- erent-energy-sources-for-a-home-for-csec-cape-and-cvq/
2	https://github.com/carstenwindler/green-it
3	https://www.infoworld.com/article/2640285/6-valuable-green-it-resources.html
Any othe	er (Access to AI tools / Data driven insights (if applicable) or any other):
1	OpenAI GPT Models, OpenAI Codex, OpenAI Gym, OpenAI CLIP, OpenAI DALL-
	E etc
2	TensorFlow and PyTorch, Microsoft Azure AI, Google Cloud AI, Amazon AI
	Services, HPE GreenLake etc

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Internal	Internal Assessment:				
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment				
	of 20 marks.				
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.				
3	Duration of the midterm test shall be one hour.				
Continuous Assessment:					
Continuous Assessment is of 20 marks. The rubrics for assessment will be considered on					
approval	by the subject teachers. The rubrics can be any 2 or max 4 of the following:				

Suggested List of Tutorials:

Sr.No.	Detailed Contents
1	Research an organization's IT power usage and identify ways to reduce it. Find
	creative ways to measure power output of your computer(s) and peripherals e.g. pull
	battery on laptop and measure charging requirements.
2	Measuring and reducing the carbon footprint of IT professionals' operations and
	suggesting means of reducing Carbon Footprint.
3	Research the sustainability of an organization's IT cooling.
4	Research the sustainability of paper use in an organization.
5	Research an organizations and your local municipality's recycling efforts.
	Particularly focus on the way they handle e-waste.
6	Develop a more sustainable design of an organization's data centres. Submit your
	proposal with justifications.
7	Using the readings as a guideline, research an organization's IT sustainability plan
	and summarize it along with your recommendations on how to improve it.
8	Real-world case studies of organizations successfully implementing Green IT
	Initiatives.
9	Measuring and reporting on the environmental performance of IT operations.
10	Studying which of the latest Green IT techniques (eg:- Remote Maintenance using
	Tools, E-Learning & E-Training, Web Conferencing & E-Webinar Meetings, E-
	Signatures, Virtual Filing & Cloud Computing) can be applied to your Institute and
	submitting report for the same.

Note: Suggested List of Tutorials is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging tutorials, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks
9	Peer Review and Participation	05 marks

End Sen	End Semester Theory Examination:			
1	Question paper will be of 60 marks.			
2	Question paper will have a total of five questions.			
3	All questions have equal weightage and carry 20 marks each.			
4	Any three questions out of five needs to be solved.			

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - DATABASE MANAGEMENT SYSTEMS

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE403	Database Management Systems (Theory)	03		01	03		01	04
Total Credits							04	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Iname	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE403	Database Management Systems (Theory)	03		01	03		01	04

	Course Name	Examination Scheme						
		Theory						
Course Code		Internal Assessment		End	Term Work	Practical &	Total	
		Mid- Term Test	Continuous Assessment	Sem Exam	VV OT K	Oral		
NOE403	Database Management Systems (Theory)	20	20	60			100	

Co	urse Prerequisites: Data Structures
Co	urse Objectives:
1	Collaborate effectively in teams to design and implement data-driven solutions to complex
	problems.
2	Gain proficiency in designing, implementing, and managing relational and non-relational
	database management systems.
3	Explore advanced topics such as data warehousing and big data analytics.
4	Explore concepts of distributed database systems.
Co	urse Outcomes:
Aft	er successful completion of the course students will be able to:
1	Recognize the need for a database management system.
2	Understand and apply the concept of ER model and Relational Model and normalization
	to relational database design.
3	Construct relational models and execute SQL queries.
4	Explore advanced Database management concepts and No SQL.
5	Explore data warehousing and big data technologies.
6	Understand distributed Database systems.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

DATABASE MANAGEMENT SYSTEMS (THEORY)

Module	Contents	Hrs
1	Introduction Database Concepts	02
1.1	Introduction, Importance of data management in organizations, DBMS system	
	architecture, Evolution of database technologies.	
2	Relational Database Management Systems (RDBMS)	10
2.1	 The Entity-Relationship (ER) Model: Entity types, Types of Attributes, Keys, Relationship constraints: Cardinality and Participation, Extended Entity-Relationship (EER) Model. Relational Model: Relational schema and concept of keys. Mapping the ER and EER Model to the Relational Model Database normalization: 1NF, 2NF, 3NF, BCNF 	
3	SQL fundamentals	08
3.1	Overview of SQL: Data Definition Command with constraints, Data Manipulation commands, Data Control commands, views in SQL, joins, Nested Queries Transaction concept, Transaction states, ACID properties, Transaction Control Commands.	
4	Non-Relational Database Management Systems (NoSQL)	06
4.1	Types of NoSQL databases: document-based, key-value, column-family, and graph databases, Characteristics and use cases of NoSQL databases, Comparison between SQL and NoSQL databases (e.g., MongoDB, Cassandra)	
5	Advanced Data Management Concepts	06
5.1	Data warehousing and OLAP (Online Analytical Processing), Introduction to big data technologies (e.g., Hadoop, Spark), Data lakes and data integration strategies, Data governance and security in modern data systems.	
6	Introduction to Distributed Databases	07
6.1	Introduction to distributed database systems, characteristics of distributed databases, Comparison with centralized and decentralized database systems, Distributed Database Architectures, Distributed data storage: Data fragmentation, replication, and allocation strategies, Distributed transaction management: Two-phase commit protocol, Three-phase commit protocol, Data consistency and concurrency control in distributed environments.	
	Total	39

Department of Electronics and Computer Science, NEP Scheme w.e.f. A.Y. 2024-25

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Te	extbooks:
1	Korth, Slberchatz, Sudarshan, Database System Concepts, 6 thEdition, McGraw Hill.
2	Elmasri and Navathe, Fundamentals of Database Systems, 5 thEdition, Pearson Education.
3	Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH.
R	eference books:
1	Peter Rob and Carlos Coronel, Database Systems Design, Implementation and
	Management ^I , Thomson Learning, 5 thEdition.
2	Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.
3	G. K. Gupta, Database Management Systems, McGraw Hill, 2012
4	Bradshaw, S., Brazil, E., Chodorow, K. (2019). MongoDB: The Definitive Guide: Powerful
5	Data Warahousing Fundamentals, India, Wiley India Dyt. Limited, 2006
5	Burns, Brandan, Designing Distributed Systems: Detterns and Deredigms for Scalable
0	Reliable Services Japan O'Reilly Media 2018
0	nline Resources:
1	https://pptal.ac.ip/courses/106/105/106105175/
1	https://npter.ac.nl/courses/100/103/1001031/3/
2	https://www.elesseentrel.com/course/cuevem_database_monogement_cuetem_0014
3	https://www.classcentral.com/course/swayam-database-management-system-9914
4	nups://www.mooc-nst.com/tags/dbms
Vi	irtual Labs.
1	http://ylabs.iitkgp.ac.in/se///simulation/
$\frac{1}{2}$	http://vidos.nikgp.ac.ni/sc/4/sinulation/
	<u>https://vsit.edu.in/via//DDivis/views_Sinitiator.ittin</u>
Δ	Tools
1	Draw io: A free web-based tool for creating FR and FFR diagrams
$\frac{1}{2}$	https://dbschema.com/ : An interactive database design and management tool
2	SOI Fiddle: An online tool to write and test SOI, queries against different databases
$\frac{J}{\Lambda}$	SOL Bot: An Al tool that helps generate SOL queries from natural language inputs
-	SQLDOL AN ALOOF that helps generate SQL queries from hatural language inputs.
In	dustry articles:
1	https://shorturl.at/NFsay: The Google File System
2	Bigtable: A Distributed Storage System for Structured Data: Google
<u> </u>	
C	ase Studies:
1	https://8weeksglchallenge.com/
2	https://docs.oracle.com/cd/E16338_01/gateways.112/e12069/ch4.htm#GMSWN300
4 In 1 2 Ca 1 2	SQLBot: An AI tool that helps generate SQL queries from natural language inputs. dustry articles: https://shorturl.at/NFsay: The Google File System Bigtable: A Distributed Storage System for Structured Data: Google ase Studies: https://8weeksqlchallenge.com/ https://docs.oracle.com/cd/E16338_01/gateways.112/e12069/ch4.htm#GMSWN300

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Internal	Internal Assessment:				
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment				
	of 20 marks.				
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.				
3	Duration of the midterm test shall be one hour.				

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Multiple Choice Questions (Quiz) 5	05 marks
2	Literature review of papers/journals	05 marks
3	Participation in event/workshop/talk/competition followed by a small	05 marks
	report and certificate of participation relevant to the subject	
4	Wins in the event/competition/hackathon pertaining to the course	10 marks
5	Case Study, Presentation, group discussion, technical debate on recent	10 marks
	trends in the said course	
6	Project-based Learning and evaluation / Extra assignment / Question	10 marks
	paper solution	
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10 marks
8	Content beyond syllabus presentation 10	10 marks
9	Creating Proof of Concept 10	10 marks
10	Mini Project / Extra Experiments/ Virtual Lab 10	10 marks
11	GATE Based on Assignment tests/Tutorials etc 10	10 marks
12	Peer Review and participation	05/10marks
*For sr.n	o.7, the date of the certification exam should be within the term, and in ca	ase a student
is unable	to complete the certification, the grading has to be done accordingly.	
Indirect	Assessment	
1	Mock Viva	
2	Skill Enhancement Lecture	
3	Extra Assignments/lecture	

End Semester Theory Examination:			
1	Question paper will be of 60 marks.		
2	Question paper will have a total of five questions.		
3	All questions have equal weightage and carry 20 marks each.		
4	Any three questions out of five needs to be solved.		

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science COURSE NAME: - QUALITATIVE ANALYSIS

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE404	Qualitative Analysis (Theory)	03		01	03		01	04
Total Credits								

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Iname	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE404	Qualitative Analysis (Theory)	03		01	03		01	04

	Course Name	Examination Scheme							
		Theory							
Course Code		Internal Assessment		End	Term Work	Practical &	Total		
		Mid- Term Test	Continuous Assessment	Sem Exam		Oral			
NOE404	Qualitative Analysis (Theory)	20	20	60			100		

Co	urse Objectives:							
1	Emphasize the importance and application of quantitative methods in various fields.							
2	Equip students with the skills necessary for effective data collection, organization, and							
	management.							
3	Train students in the application of inferential statistics to make predictions and							
	generalizations about populations from sample data.							
4	Teach students to calculate probabilities and apply probability distributions to real- world							
	scenarios.							
5	Ensure students can perform various data analysis tasks using these tools effectively.							
Co	urse Outcomes:							
Aft	er successful completion of the course students will be able to:							
1	Grasp the fundamental concepts and techniques of quantitative analysis.							
2	Acquire skills in collecting, organizing, and summarizing data.							
3	Apply probability concepts and various statistical methods to analyze data.							
4	Understand the applications of mathematical models in real-world scenarios.							
5	Understand the application of software tools in analyzing and visualizing data.							

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

QUALITATIVE ANALYSIS (THEORY)

Module	Contents	Hrs
1	Basic Concepts, Operation Research and its role in Decision Making	06
1.1	Introduction to Quantitative Analysis: Basic concepts and its role in decision	
	making, Nature of OR problem, steps in OR problem, Formulation of LP	
	problems, Solution of L.P.P. by Graphical Method, Computer Output.	
2	Duality and Sensitivity Analysis	06
2.1	Duality and its implications, Sensitivity analysis (Computer Output Analysis),	
	Introduction to Integer programming, Goal programming problems (Only	
	formulation and solution of two variable cases).	
3	Transportation and Network Problems	06
3.1	Transportation Models, Initial Basic Feasible Solution and Optimal Solution,	
	Assignment Problem and Travelling Salesman Problem, Network Models:	
	minimum Spanning Tree Problems, Shortest Route and Maximal Flow	
	Technique.	
4	Queuing Theory and Simulation Models	06
4.1	Queuing theory: Single Channel Queuing Model with Poisson arrivals and	
	Exponential Service Times (M/M/1), Simulation Modelling, Markov	
	Analysis.	
5	Software Usages	06
5.1	Practical Module: Use of Excel Solver/TORA software to solve above	
	problems and teaching the above concepts using at least one case in each topic.	
6	Data & Statistics	09
6.1	An Overview: Visualizing Data, Probability, Describing Distributions with	
	Numbers, Normal Distributions, Sampling Distributions, Interval Estimation	
	for a Population Mean, Hypothesis Testing for a Population Mean (σ known),	
	Hypothesis Testing for a Population Mean (σ unknown)	
	Total	39

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Re	eference books:				
1	Barry Render, Ralph M. Stair, Jr., Michael E. Hanna, T N Badri, Quantitative Analysis for				
	Management, Pearson.				
2	Vohra N. D., Quantitative Techniques in Management, Tata McGraw Hill.				
3	J. K. Sharma, Operation Research – Theory & amp; Applications, MACMILLAN.				
A	Access to software and virtual labs:				
1	Excel, R, Python				

Internal Assessment:							
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment						
	of 20 marks.						
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.						
3	Duration of the midterm test shall be one hour.						

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks

End Sen	End Semester Theory Examination:					
1	Question paper will be of 60 marks.					
2	Question paper will have a total of five questions.					
3	All questions have equal weightage and carry 20 marks each.					
4	Any three questions out of five needs to be solved.					

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science COURSE NAME: - WEB DEVELOPMENT

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE405	Web Development (Theory)	03		01	03		01	04
Total Credits								

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course Code	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NOE405	Web							
	Development	03		01	03		01	04
	(Theory)							

	Course Name	Examination Scheme							
		Theory							
Course Code		Internal Assessment		End	Term Work	Practical &	Total		
		Mid- Term Test	Continuous Assessment	Sem Exam		Oral			
NOE405	Web Development (Theory)	20	20	60			100		

Co	urse Objectives:						
1	Understand the foundational concepts of web development including front-end and back-						
	end distinctions, and basic technologies like HTML, CSS, and JavaScript.						
2	Develop proficiency in creating static web pages using HTML and CSS, including						
	structuring documents, working with links, images, and forms, and applying CSS styling						
	techniques.						
3	Gain knowledge and skills in responsive web design principles and practices, including						
	media queries, flexible grids, and CSS frameworks like Bootstrap.						
4	Acquire fundamental understanding of JavaScript programming, covering variables, data						
	types, control structures, functions, DOM manipulation, and event handling.						
5	Explore backend development concepts with Firebase and Node.js, including setup,						
	database integration, web server creation, and RESTful API development.						
6	Familiarize with tools and technologies for Express web development, including Gatsby,						
	GraphQL, static site generation, styling, optimization, and deployment strategies.						
Co	urse Outcomes:						
Aft	er successful completion of the course students will be able to:						
1	Demonstrate the ability to create basic static web pages using HTML and CSS,						
	incorporating links, images, forms, and applying styling techniques.						
2	Design responsive web layouts utilizing media queries, flexible grids, and CSS						
	frameworks, ensuring compatibility across various devices and screen sizes.						
3	Implement interactive features on web pages using JavaScript, including dynamic content						
	updates, event-driven behavior, and user interaction.						

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

4	Develop backend solutions using Firebase and Node.js, integrating authentication,
	databases, and RESTful APIs to support dynamic web applications.
5	Construct and deploy web applications using Express.js, employing routing, middleware,
	and server-side logic for efficient handling of HTTP requests and responses.
6	Utilize Gatsby and associated technologies for building optimized, serverless web
	applications, leveraging GraphOL, static site generation, and deployment best practices.

WEB DEVELOPMENT (THEORY)

Module	Contents	Hrs
1	Introduction to Web Development	06
1.1	Introduction to the World Wide Web, Front-end vs. back-end development,	l
	Overview of HTML, CSS, and JavaScript, Introduction to version control with	l
	Git, Setting up development environment (text editor, browser, Git).	l
2	HTML and CSS Fundamentals	07
2.1	HTML basics: tags, elements, attributes, Document structure: headings, paragraphs, lists, Working with links and images, Forms, CSS fundamentals: selectors, properties, values, Styling text, colors, backgrounds, and borders, CSS box model: margin, padding, border, Layout techniques: floats, positioning, flexbox.	
3	Responsive Web Design	06
3.1	Introduction to responsive web design principles, using media queries to create responsive layouts, Flexible grids and fluid images, CSS frameworks for responsive design (e.g., Bootstrap), Testing and debugging responsive websites.	
4	Introduction to JavaScript	07
4.1	Introduction to JavaScript: Variables, data types, operators, Control structures: loops and conditionals, Functions and scope, DOM manipulation: selecting elements, modifying content and attributes, Event handling: responding to user actions.	
5	Introduction to Backend Development	09
5.1	Introduction to Firebase, Firebase Authentication, Realtime Database or Firestore.	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

5.2	Introduction to backend development and Node.js, Setting up a Node.js						
	development environment, Building a simple web server with Node.js,						
	Introduction to Express is framework, Routing and middleware in Express is,						
	Handling HTTP requests and responses, Introduction to RESTful APIs.						
6	Tools for Express Web Development	04					
6 6.1	Tools for Express Web DevelopmentGatsby :GraphQL, Static Site Generation (SSG), Plugins, Styling in Gatsby,	04					
6 6.1	Tools for Express Web DevelopmentGatsby :GraphQL, Static Site Generation (SSG), Plugins, Styling in Gatsby,Optimization Techniques. Deployment, Serverless Functions.	04					
6 6.1	Tools for Express Web DevelopmentGatsby :GraphQL, Static Site Generation (SSG), Plugins, Styling in Gatsby, Optimization Techniques. Deployment, Serverless Functions.	04					

Tex	xtbooks:
1	Ralph Moseley, M.T. Savliya, "Developing Web Applications", Willy India, Second
	Edition, ISBN: 978-81-265-3867-6
2	Web Technology Black Book, Dremtech Press, First Edition, 978-7722-997
3	Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5" Third Edition,
	O'REILLY, 2014
	(http://www.ebooksbucket.com/uploads/itprogramming/javascript/Learning_PHP_MySQ
	L_Javascript_CSS_HTML5 Robin_Nixon_3e.pdf)
4	Dana Moore, Raymond Budd, Edward Benson, Professional Rich Internet Applications:
	AJAX and Beyond Wiley publications. https://ebooks-it.org/0470082801-ebook.htm
5	Alex Banks and Eve Porcello, Learning React Functional Web Development with React
	and Redux, OREILLY, First Edition
Ref	ference books:
1	Harvey & Paul Deitel& Associates, Harvey Deitel and Abbey Deitel, Internet and World
	Wide Web - How To Program, Fifth Edition, Pearson Education, 2011.
2	Achyut S Godbole and AtulKahate, -Web Technologies, Second Edition, Tata McGraw
	Hill, 2012.
3	Thomas A Powell, Fritz Schneider, —JavaScript: The Complete Reference, Third Edition,
	Tata McGraw Hill, 2013
4	Masse, M. (2011). REST API Design Rulebook. Germany: O'Reilly Media.
5	Porcello, E., Banks, A. (2018). Learning GraphQL: Declarative Data Fetching for Modern
	Web Apps. China: O'Reilly Media.
Use	eful Links:
Res	sources
1	MDN Web Docs - JavaScript
2	React Documentation

Department of Electronics and Computer Science, NEP Scheme w.e.f. A.Y. 2024-25

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

3	Node.js Documentation
4	Express.js Documentation
5	MongoDB Documentation
6	PostgreSQL Documentation
AI '	Tools:
1	Code Generation and Assistance: GitHub Copilot, TabNine
2	Testing and Debugging: DeepCode, Snyk
3	Automated Code Review: Codacy, SonarQube
4	Performance Optimization: LightStep, Datadog APM
5	Front-End Development: Figma with AI Plugins, Adobe XD with AI Features
6	Back-End Development: AWS CodeGuru, Kite
7	Database Management: DataRobot, OtterTune
8	DevOps and Deployment: Ansible with AI, Harness.io
9	Project Management and Collaboration: Asana with AITrello with AI Plugins
10	Documentation: Jasper (formerly Jarvis), Scribe

Internal	Internal Assessment:						
1	Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment						
	of 20 marks.						
2	Mid Term test is to be conducted when approx. 50% syllabus is completed.						
3	Duration of the midterm test shall be one hour.						

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any	10 marks
	MOOC	
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by	05 marks
	small report and certificate of participation relevant to the subject	
	(in other institutes)	
8	Multiple Choice Questions (Quiz)	05 marks

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

End Sem	End Semester Theory Examination:				
1	Question paper will be of 60 marks.				
2	Question paper will have a total of five questions.				
3	All questions have equal weightage and carry 20 marks each.				
4	Any three questions out of five needs to be solved.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - INTRODUCTION TO INNOVATION AND ENTREPRENEURSHIP FOR ENGINEERS

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECEM42	Introduction to Innovation and Entrepreneurship for Engineers (Theory)			02			02	02
Total Credits								02

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECEM 42	Introduction to Innovation and Entrepreneurship for Engineers (Theory)			02			02	02

		Examination Scheme						
	Course Name	ſ	Theory					
Course		Internal As			Ducation			
Code			Continu	End	Term	r ractical	Total	
Cour		Mid-Term	ous	Sem	Work	Oral	IUtai	
		Test	Assessm	Exam		Orai		
			ent					
	Introduction to							
NECEM	Innovation and							
12 12	Entrepreneurship				25		25	
72	for Engineers							
	(Theory)							

Co	urse Objectives:				
1	Understand the concepts and theories of innovation and entrepreneurship within				
	engineering disciplines.				
2	Develop critical thinking and problem-solving skills necessary for identifying and				
	evaluating entrepreneurial opportunities.				
3	Gain practical experience in ideation, prototyping, and validation of innovative solutions to				
	engineering challenges.				
4	Explore the role of engineering in addressing societal and environmental challenges through				
	innovation and entrepreneurship.				
5	Cultivate teamwork, communication, and leadership skills essential for entrepreneurial				
	success in interdisciplinary contexts.				
Co	urse Outcomes:				
Aft	er successful completion of the course students will be able to:				
1	Understand principles of innovation and entrepreneurship.				
2	Identify and evaluate entrepreneurial opportunities.				
3	Understand and Apply design thinking and innovation methodologies.				
4	Develop and validate viable business models and innovative solutions.				
5	Understand and demonstrate ethical practices in innovation and entrepreneurship				
6	Demonstrate entrepreneurial mind set and skills.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

INTRODUCTION TO INNOVATION AND ENTREPRENEURSHIP FOR ENGINEERS (THEORY)

Module	Contents	Hrs
1	Introduction to Innovation and Design Thinking	06
1.1	Overview of innovation concepts and importance in engineering.	
1.2	Types of innovation and innovation processes.	
1.3	Introduction to design thinking methodology.	
1.4	Applying design thinking principles to engineering challenges.	
1.5	Empathy mapping and user journey analysis.	
1.6	Iterative design process and user testing.	
2	Opportunity Identification, Ideation	04
2.1	Techniques for identifying customer needs and pain points.	
2.2	Idea generation exercises and brainstorming sessions.	
2.3	Problem-solving through human-cantered design.	
3	Prototyping and MVP Development	04
3.1	Introduction to prototyping techniques and tools.	
3.2	Minimum viable product (MVP) development and validation.	
3.3	Rapid iteration and feedback gathering.	
4	Introduction to Entrepreneurship	04
4.1	Overview of entrepreneurship concepts and mindset.	
4.2	Role of entrepreneurs in driving economic and social change.	
4.3	Characteristics of successful entrepreneurs Case Studies	
5	Business Model Innovation and Validation	04
5.1	Introduction to business model canvas and value proposition design.	
5.2	Revenue models, pricing strategies, and cost structure analysis.	
5.3	Techniques for market research and customer validation.	
5.4	Identifying target markets and understanding customer needs.	
6	Legal and Ethical Considerations	04
6.1	Intellectual property rights and patents in engineering innovation.	
6.2	Ethical considerations in entrepreneurship and engineering practice.	
6.3	Social responsibility and sustainability in innovation and entrepreneurship.	
	Total	26

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Textboo	ks:						
1	"Entrepreneurship Development and Small Business Enterprises" by Poornima M. Charantimath.						
2	"Innovation and Entrepreneurship: Practice and Principles" by Peter F. Drucker.						
3	"Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers" by Alexander Osterwalder and Yves Pigneur.						
4	"Innovative India: Science and Technology Entrepreneurship" by K. Vijayaraghavan and Rajan Srikanth.						
5	"Startup Nation: Making India a Startup Ecosystem" by Dr. H.K. Mittal.						
6	"Entrepreneurship: Theory, Process, and Practice" by Kuratko, Hornsby, and Covin:						
7	"Zero to One: Notes on Startups, or How to Build the Future" by Peter Thiel and						
	Blake Masters.						
Websites	5:						
1	Startup India (startupindia.gov.in): Provides resources, guidelines, and support for start-ups and entrepreneurs in India, including information on funding, policies, and events.						
2	National Entrepreneurship Network (NEN) (wadhwanifoundation.org/national- entrepreneurship-network): Offers resources, workshops, and programs for entrepreneurship education and ecosystem development in India.						
3	MIT Open Course Ware (ocw.mit.edu): Offers free online courses on entrepreneurship and innovation, including lecture notes, assignments, and case studies from MIT's entrepreneurship curriculum.						
4	Stanford eCorner (ecorner.stanford.edu): Features a rich collection of videos, podcasts, and articles on entrepreneurship and innovation from Stanford University, including talks by successful entrepreneurs and industry experts.						
5	Coursera (coursera.org): Provides online courses on entrepreneurship and innovation from top universities and institutions, allowing students to learn at their own pace and earn certificates.						
6	TiE (The Indus Entrepreneurs) (tie.org): A global non-profit organization dedicated to fostering entrepreneurship through mentoring, networking, and education, with many chapters in India offering local support and events.						
Addition	al Resources:						
1	Entrepreneurship Development Institute of India (EDII) (ediindia.org) Provides entrepreneurship education, training, and research programs, as well as workshops and seminars on various aspects of entrepreneurship.						
2	Harvard Business Review (hbr.org) Offers articles, case studies, and insights on innovation, entrepreneurship, and business strategy from industry experts and thought leaders.						
3	Khan Academy (khanacademy.org) Offers free educational resources, including lessons on entrepreneurship, economics, and business fundamentals.						

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Term-W	Term-Work: The Assessment will be based on a set of 5 activities of 5 marks each.				
The sugg	ested list of activities:				
1	Individual and group assignments (e.g., business model canvas, market research				
	report).				
2	Presentations and pitches for venture ideas.				
3	Participation in discussions and workshops.				
4	Reflection papers or journals documenting personal learning and growth.				
5	Presentation of innovation projects by students.				
6	Feedback and peer evaluation of prototypes.				
7	Reflection on the innovation process and lessons learned.				

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - SIMULATION LAB FOR SIGNAL PROCESSING

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	name	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECVEL 41	Simulation Lab for Signal Processing		02	01		01	01	02
Total Credits							02	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
	Simulation		02	01		01	01	02
NECVEL	Lab for							
41	Signal							
	Processing							

		Examination Scheme						
	Course Name	Theory						
Course Code		Internal Assessment		End	Term Work	Practical &	Total	
		Mid- Term Test	Continuous Assessment	Sem Exam		Oral		
NECVEL 41	Simulation Lab for Signal Processing	20	20	60			100	

Co	urse Objectives:
1	To provide students with real experience in the MATLAB technical computing
	environment.
2	To teach students how to use a high-level programming language MATLAB, to solve
	scientific problems using engineering applications and examples.
Co	urse Outcomes:
Aft	er successful completion of the course students will be able to:
1	Understand the fundamentals of MATLAB, its technical computing environment and use
	its basic functionalities.
2	Learn how to use the for-loop, while-loop, conditional statement control flow constructs,
	and implementing user-defined functions in MATLAB.
3	Acquire good data visualisation skills by experimenting with different graphing methods
	and their customisations.
4	Build a graphical user interface (GUI) using App Designer in MATLAB.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

SIMULATION LAB FOR SIGNAL PROCESSING (Tutorial)

Module	Contents	Hrs
1	Introduction to MATLAB	04
1.1	Getting Started, Scripts, Making Variables, Manipulating Variables, Basic	
	Plotting, Debugging M-files	
1.2	Visualization and Programming: Functions, Flow Control, Line Plots,	
	Image/Surface Plots, Efficient Codes, Debugging	
2	Solving Equations, Curve Fitting, and Numerical Techniques	02
2.1	Control flow and operators, Array operations and Linear equations, Linear	
	Algebra, Polynomials, Optimization, Differentiation, Integration, Differential	
	Equations, Symbolic math toolbox.	
3	Advanced Methods	02
3.1	Probability and Statistics, Data Structures, Basic Image processing, File I/O.	
4	Various Functions and Toolboxes	05
4.1	Documentation, Miscellaneous Useful Functions, Graphical User Interfaces,	
	Simulink, Image Processing, Hardware Interface	
	Total	13

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

SIMULATION LAB FOR SIGNAL PROCESSING LAB

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned				
Code	Ivame	Theory	Practical	Tutorial	Theory	Practical	Tut	Total	
NECVEL 41	Simulation Lab for Signal Processing		02			01	01	02	

			I	Examinatio	n Scheme				
			Theory						
Course	Course		nternal	End	Tomm	Practical			
Code	Name	Mid-	sessment	Sem	Work	&	Total		
		Term	Continuous	Exam		Oral			
		Test	Assessment						
	Simulation								
NECVEL	Lab for				25	25	50		
46	Signal				-0	_0			
	Processing								

Lab Prerequisite: A fundamental understanding of computer programming principles such as variables, constants, expressions, statements and basics of engineering mathematics.

Lab Objectives:

- 1 To provide students with real experience in the MATLAB technical computing environment.
- 2 To teach students how to use a high-level programming language MATLAB, to solve scientific problems using engineering applications and examples.

Lab Outcomes:

After successful completion of the lab course students will be able to:

- 1 Utilize MATLAB basic functionalities.
- 2 Develop expertise with the use of MATLAB's control flow constructs and implementing user-defined functions to extend MATLAB's capabilities.
- 3 Use for-loop, while-loop, and conditional statement control flow constructs in MATLAB.
- 4 Apply good data visualisation skills by experimenting with different graphing methods and their customisations.
- 5 Use MATLAB Simulink to design systems with multidomain models and simulate them.
 6 Create graphical user interface (GUI) using App Designer in MATLAB.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Suggest	ted Experiments: Students are required to complete at least 08 experiments.
Sr.No.	Name of the Experiments
1	Basic Operations on Matrices.
2	Generation of Various Signals and Sequences (Periodic and Aperiodic), such as Unit
	Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc.
3	Operations on Signals and Sequences such as Addition, Multiplication, Scaling,
	Shifting, Folding, Computation of Energy and Average Power.
4	Finding the Even and Odd parts of Signal/Sequence and Real and Imaginary parts of
	Signal.
5	Convolution for Signals and sequences.
6	Auto Correlation and Cross Correlation for Signals and Sequences.
7	Verification of Linearity and Time Invariance Properties of a given Continuous
	/Discrete System.
8	Computation of Unit sample, Unit step and Sinusoidal responses of the given LTI
	system and verifying its physical realizability and stability properties.
9	Gibbs Phenomenon Simulation.
10	Finding the Fourier Transform of a given signal and plotting its magnitude and phase
	spectrum.
11	Waveform Synthesis using Laplace Transform.
12	Locating the Zeros and Poles and plotting the Pole-Zero maps in S-plane and Z-Plane
	for the given transfer function.
13	Generation of Gaussian noise (Real and Complex), Computation of its mean, M.S.
	Value and its Skew, Kurtosis, and PSD, Probability Distribution Function.
14	Verification of Sampling Theorem.
15	Removal of noise by Autocorrelation / Cross correlation.
16	Extraction of Periodic Signal masked by noise using Correlation.
17	Checking a Random Process for Stationarity in Wide Sense.

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term-Work:				
1	Term work should consist of 10 experiments.			
2	The final certification and acceptance of term work ensures satisfactory			
	performance of laboratory work and minimum passing marks in term work.			
3	Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks)			

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

COURSE NAME: - FIELD PROJECTS

Course	Course	Te (Te	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Iname	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total	
NECFP 41	Field Projects		02			02		02	
			Total Cred	its				02	

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Iname	Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NECFP	Field		02			02		02
41	Projects		02			02		02

			F	Examinati	on Scher	ne	
			Theory				
Course Code	Course Name		nternal sessment	End	Term Work	Practical &	Total
		Mid- Term Test	Continuous Assessment	Sem Exam		Ural	
NECFP 41	Field Projects				25		25

Scheme: Students are expected to complete any one of the following activities as part of their field project:

- A To identify and address pressing challenges faced by industry or society. This course provides students with the opportunity to apply theoretical knowledge gained in their academic studies to real-world situations. The course also provides networking opportunities with industry experts. Through engaging projects, students synthesize concepts from their academic coursework, empowering them to explore, design, implement, and present solutions to engineering problems.
- **B** Students will engage in experiential learning to connect academic knowledge with realworld contexts through the development of case studies focused on various sectors such as industry, government, or non- governmental organizations. These case studies involve observing and analysing processes, operations, or systems during visits or surveys. Through critical thinking, students can propose potential enhancements or innovations to improve existing processes, operations, or systems.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Co	urse Objectives:
1	To engage students in field visits, with an objective of identifying and formulating problem statements based on observations during visits in industry, Government/ Non-governmental organizations as well as the broader societal context. (with reference to
	Scheme A).
	Students engage in experiential learning through developing industry or organizational
	case studies, analysing real-world processes, and proposing innovative enhancements
	based on critical observations and analysis (with reference to Scheme B).
	These approach bridges academic theory with practical application, fostering deeper
	understanding and actionable insights for students.
2	To apply theoretical knowledge and foster creativity & innovation in addressing practical real-world problems.
3	To enhance student's analytical, design & problem-solving skills, increase student's critical
	thinking ability to engage them in lifelong learning.
4	To enhance students' communication and presentation skills.
Co	urse Outcomes:
Aft	er successful completion of the course students will be able to:
1	Identify and resolve the issues with industry & society at large, to provide practical
	solutions for real-world challenges.
2	Implement novel and efficient solutions fostering interdisciplinary collaboration in
	addressing challenges.
3	Apply appropriate techniques, resources and modern engineering tools, to improve the
	analytical, design, and problem-solving skills to abreast with the booming technologies.
4	Develop effective teamwork abilities, facilitating collaboration and synergy among
	individuals to achieve common goals.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

FIELD PROJECTS

Module	Contents	Hrs
1	Project Planning and Proposal Development	06
1.1	Defining project objectives and scope, conducting literature review and	
	background research, developing project proposal and timeline, Identifying	
	required resources and constraints.	
2	Design and Implementation	06
2.1	Selecting appropriate methodologies and Simulation tools, designing system	
	architecture and components, Prototyping and testing system functionalities,	
	iterative development and troubleshooting.	
3	Documentation and Reporting	06
3.1	Maintaining detailed project documentation, recording progress, challenges	
	and solutions, writing technical reports and documentation, Creating	
	presentations for project updates and final presentation.	
4	Project Presentation and Evaluation	06
4.1	Delivering oral presentations of project progress, demonstrating project	
	outcomes and achievements, responding to questions and feedback from peers	
	and instructors, reflecting on lessons learned and areas for improvement.	
	Total	24

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

Term V	Vork:
1	Guideline to maintain quality of field project are as follows:
	Students can achieve this by making proper selection of projects based on field visit/ study of archives from the library. Encourage the use of open-source software's for simulation, design and documentation of the projects.
	Project Topic selection and approval: -
	 The group may be of maximum FOUR (04) students. The students are required to visit industry/community/library to identify the problem statement and be able to provide the proof of interaction.
	 Topic selection and approval by 2 Expert faculty from department at the start of semester.
	4. Log Book to be prepared for each group to record the work per week by students. Weekly comment, remarks to be put by guiding faculty. Both students and faculty will put signatures in it per week. The log book can be managed online with proper authentication method using google sheets/forms or open-source project management software.
	5. Suggested steps for project selection and implementation as per scheme
	 A. a. Identify Project Goals and Objectives b. Conduct Needs Assessment: (Identify potential stakeholders, such as industries, communities, or organizations, and assess their needs or challenges that could be addressed through the project.) c. Research and Explore Options d. Formulate Problem Statements e. Evaluate Feasibility f. Select Project Scope g. Develop Project Plan h. Prototype Development (for Hardware Projects) Software Development (for Software Projects) i. Testing and Validation j. Monitoring and Evaluation k. Documentation and Reporting
2	Project Report Format:
	1. Project report should include Introduction, Literature review, Methodology, Project design and implementation, Testing, Result and discussion, Conclusion, References, Appendices Report should not exceed 20 pages and spiral binding not required.

(An Autonomous Institute Affiliated to University of Mumbai, Approved by A.I.C.T.E & Recognized by Govt. of Maharashtra)

Department of Electronics and Computer Science

3	The final certification and acceptance of term work ensures satisfactory performance
	of project work and minimum passing marks in term work.
4	Term Work evaluation and marking as per Scheme A:
	 At the end of semester, the above 2 expert faculty who have approved the topic will internally evaluate the performance. Students have to give a presentation and demonstration on the Field Project. In the evaluation each individual student should be assessed for his/her contribution, understanding and knowledge gained about the project completed. Based upon it the marks will be awarded to students. Distribution of 25 Marks for Term Work:
	• Initial Stage: Field study report and Project Proposal = 05 Marks
	 Prototype development and Testing = 05 Marks
	• Project report = 05 Marks
	Prototype Demonstration and final presentation = 10 Marks
5	Project selection, implementation and report writing with reference to Course
	Description B.
	The student will mention the objectives of the field visit, description including field visit data collection, processes/ operations, analysis and suggestions for the improvement and innovations if any.
	Distribution of 25 Marks for Term Work in scheme B is as follows:
	 Assessment of case study report with analysis prepared by student groups: 10 marks Presentation by student groups and O&A: 10 marks
	Suggestions given for improvement in the present Processes/ Systems / Operations, innovation identification: 05 marks.